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ABSTRACT

This report addresses the topic of building vibration response to sonic boom and the
evaluation of the associated human response to this vibration. Within this report, an attempt 1s
made to reexamine some of the issues addressed in the previous extensive coverage of the
topic, primarily by NASA, and offer, in some cases, fresh insight that may assist in
reassessing the potential impact of sonic boom over populated areas.

The report first reviews human response to vibration and develops, for purposes of this
report, a new human vibration response criterion curve as a function of frequency. The
difference between response to steady-state versus impulsive vibration is addressed and a
"vibration exposure" or "vibration energy" descriptor is suggested as one possible way to

evaluate duration effects on response to transient vibration from sonic booms.

New data on the acoustic signature of rattling objects are presented along with a review
of existing data on the occurrence of rattle. A fairly consistent pattern for the peak acceleration

required to induce rattle is established.

Structural response to sonic boom is reviewed and a new descriptor, "Acceleration
Exposure Level" is suggested which can be conveniently determined from the Fourier
Spectrum of a sonic boom. Also included is a thorough re-analysis of the structural response
data acquired previously by NASA, during the Edwards AFB sonic boom test program in
1966. The previously well-recognized sensitivity of peak acceleration response data to aircraft
type is illustrated in more detail.

Lastly, a preliminary assessment of potential impact from sonic booms is provided in
terms of human response to vibration and detection of rattle based on a synthesis of the
preceding material.



INTRODUCTION

This report addresses the topic of building vibration response to sonic boom and the
evaluation of the associated human response to this vibration. This topic has been addressed
extensively in prior publications, primarily from NASA-Langley (e.g., Mayes and Edge,
1964; Findley, Huckel and Hubbard, 1966; Hubbard and Mayes, 1967; Carden and Mayes,
1970; Clarkson and Mayes, 1972; Clevenson, 1978; Hubbard, 1982). This extensive past
coverage can obviously not be duplicated here. Rather, an attempt is made within this report to
reexamine some of the issues addressed by these previous reports and, in some cases, attempt
to offer a fresh insight into some aspects of the problems. Hopefully, this may assist in
reassessing the potential impact of sonic boom exposure over populated areas that may ensue

from overland commercial operations of a new generation SUpersonic transport.

The report first reviews, in Section 1, criteria for human response to vibration. For
purposes of this report, a new human vibration response criterion curve is developed as a
function of frequency which is a composite of kinesthetic and tactile vibration responses.
Next, the difference between human response to steady-state versus impulsive vibration is
addressed and a "vibration exposure" (i.e., vibration energy) descriptor is suggested as one

possible way to evaluate duration effects on response to transient vibration.

Section 2 reexamines the problem of response to rattle with limited new data on the
acoustic signature of rattling objects and summarizes criteria and data on the occurrence of
rattle. A fairly consistent pattern for the peak acceleration required to induce rattle is
established by this latter process.

Section 3 examines structural response to sonic boom in some detail, including a
review of the Acceleration Shock Spectra for several sonic boom time histories. Also a new
descriptor, "Acceleration Exposure Level” (see discussion above on human response and
acceleration exposure), is suggested, which is an approximate measure of the maximum
structural response that can be conveniently determined from the Fourier Spectra of a sonic
boom. Also included is a thorough re-analysis of the structural response data acquired
previously during the Edwards Air Force Base sonic boom test program in 1966 (Stanford,
1967; Blume er al., 1967). Sensitivity of the peak acceleration response data to aircraft type
(i.e., sonic boom signature characteristics), which had been well recognized by the original
NASA experimenters, is illustrated in more detail.



Finally, Section 4 provides a preliminary assessment of potential impact from sonic
booms in terms of human response to vibration and detection of rattle based on a synthesis of
the preceding three sections. Further research remains to be done to explore, more thoroughly,
human response to transient vibration and the anticipated acceleration response of structure to

generic boom-minimized sonic boom signatures.
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1.0 CRITERIA FOR HUMAN PERCEPTION OF BUILDING VIBRATION

Vibration of building surfaces can be perceived by humans in four ways: (1) by
kinesthetic perception of whole-body vibration in any direction, (2) by tactile perception of
vibration at the fingertips, (3) by acoustic detection of sound radiated by the vibrating surface
itself or radiated by an object that rattles against the surface due to its vibration, or (4) by
visual perception. Only the first three perception modes are addressed in this report.

1.1 Criteria for Whole-Body Vibration

Preliminary criteria for human response to whole-body vibration were summarized 30
years ago in Goldman and von Gierke, 1961, based on extensive research available in the late
1950s. They defined a range of criteria for the threshold of perception, unpleasantness and

voluntary tolerance. The ranges for the first two criteria are shown in Figure 1.

More recently, an International Standard has evolved which defines criteria for
acceptable vibration levels, as a function of time of exposure, at a "reduced comfort boundary"
(ISO, 1985). Criteria are defined in the standard for longitudinal and lateral whole-body
vibration. (The most recent 1985 version of this standard increased the criterion levels for the
longitudinal direction by 2 dB over values specified in an earlier, 1974 version.) Longitudinal
whole-body vibration is often called vertical vibration but actually corresponds to vibration
excitation in the direction of a person's spine while sitting, standing or lying down. Lateral
whole-body vibration is at 90° to this direction.

Stephens et al., 1982, suggested a composite vibration perception threshold criterion
based on an amendment (ISO, 1977) to ISO Standard 2631-1974 and another ISO guide for
horizontal vibration (ISO, 1979). However, the latest addition to the ISO standards (IS0,
1989) indicates slightly (3 dB) higher vibration levels for this composite horizontal and vertical
perception threshold criteria. Figure 1 compares these three sets of criteria: (1) Unpleasant-
ness and Perception from Goldman and von Gierke, 1961; (2) Reduced Comfort (for 24-hour
exposure) from ISO, 1985; and (3) Perception Threshold from ISO, 1989. The criteria for
perception threshold, from Goldman and von Gierke and the various ISO criteria, lie within
about a 30 dB-wide band of peak acceleration levels over the frequency range of 1 to 100 Hz.
Not shown in the figure are values for a vibration detection threshold from Bekesy for
horizontal motion which lie very close to the lower boundary of the "perception” threshold
range from Goldman and von Gierke, 1961.
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1.2  Criteria for Tactile Vibration

Criteria for response to tactile vibration have been developed by Goldman, 1957 and
from an extensive survey of six such studies summarized by Verillo, 1962. The criteria
developed from these studies are compared, in Figure 2, to the criteria for perception and the
composite ISO criteria for whole-body vibration from Figure 1. (The data from Verillo is
shown as a range.) The vibration criteria for "Reduced Comfort for 24-Hr Exposure” in
Figure 1 was omitted here since it was not at all certain that it was applicable for this study. It
is clear that the whole-body vibration criteria tend to overlap the tactile vibration criteria over
the frequency range where both criteria are specified, from about 2 to 80 Hz. Note, also, that
Goldman's tactile vibration criteria are quite close to the lower range of the data from the
survey by Verillo.

1.3 Composite Whole-Body and Tactile Vibration Perception Criteria

For purposes of this study, it was desirable to establish a single human vibration
perception criteria curve. Such a curve, corresponding roughly to an average of all of the other
criteria shown in Figure 2, is also shown by the heavy black line. This proposed simplified
criteria curve for human whole-body (vertical and horizontal) and tactile vibration is defined by
the following expressions for the peak vibration level, Lpk(f) in decibels, re: 1 pg as a function
of frequency.

60 f <4 Hz
60+20lg(f/4) 4 <f <40 Hz

Lpk(® =1 g0 40 < f < 200 Hz (D
80+661g(£/200) f > 200 Hz

It is important to recognize that this criteria is only intended to be applied as a convenient
analysis guide for this study — it is not intended to represent a replacement for the currently
well-defined ISO standards. However, the latter do not include tactile vibration and hence the
need, in this study, for the proposed single criterion curve described by Eq. (1).

1.4 Response to Continuous vs Transient (Impulsive) Vibration

One might justifiably question the averaging process employed here to develop the
preceding vibration sensitivity criteria. In particular, one could question including both the
earlier (Goldman and von Gierke, 1961) and more recent (ISO, 1989) perception criteria in this
averaging process since they differ substantially and the more recent version can be presumed
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to be more reliable. However, there is another factor that has not been considered that would
tend to support the values in the above expression. It is reasonable to assume that the whole-
body vibration criteria presented so far represent human response to internal physiological
stress due to dynamic stretching of connective body tissues. For example, given the simplified
dynamic model of the human body (von Gierke, 1964) illustrated in Figure 3, one could expect
that dynamic relative displacements between the various "lumped mass" elements of the body
as a result of vibration input would represent such stretching of the connective tissue, i.e., the
springs. The point is that for continuous vibration input, the peak internal "stress” response,

call it R(). at any one frequency f_of the input signal, would be equal to the vibration input,

A(f) times a frequency-dependent vibration attenuation factor, K(f) times a Resonance

Amplification Factor, O or:

R(H) = A)+ KD Q (2)

The factor Q is estimated to be relatively low, of the order of 2 to 4 (Goldman, 1957). In
contrast, for a transient impulsive vibration input of the same peak magnitude at a given
frequency, the internal physiological response would be governed by the same sort of
expression except that the Resonance Amplification Factor Q would be replaced with a
dynamic magnification (shock response) factor which will probably not exceed about 2 for
sonic boom-type excitation. Thus one can crudely estimate that, all other things being equal,
human vibration response criterion levels to impulsive transient vibration would be of the order
of 1 to 2 times greater for sonic excitation than for steady-state continuous vibration. Very
limited information on the difference between human response criteria for continuous vs

impulsive vibration is consistent with this very rough estimate (CHABA, 1977). For example,

the following values are suggested as acceptable acceleration inputs to occupied residences
(CHABA, 1977) for these two different types of vibration environments.

Acceptable Acceleration, m/sec?
(CHABA, 1977)

Time of Day Continuous Impulsive
ms peak
Day 0.072t 0.1WN
Night 0.005 0.01

where t = duration of continuous vibration in seconds, or N = number of vibration impulses.
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In this case, allowing for a peak/rms ratio of V2 for the continuous vibration, the
acceptable levels for a four-second "continuous" vibration would be about one half the
acceptable level for one impulse for day-time exposure. This would support a value of 2 as the
ratio between continuous vs an impulsive vibration input for this particular set of conditions.
Clearly, however, application of this same rationale would support a wide range of values for
this ratio depending on the duration of the continuous vibration versus the number of impulses

for the transient vibration.

The overall point here is that if the earlier perception criteria line(s) from Goldman and
von Gierke in Figure 2 are discarded, one could argue that the composite ISO perception
criteria line should increase for impulsive vibration and hence more closely approach the tactile
vibration criteria. Unlike the whole-body vibration criteria, the latter are not expected to have
any significant difference between continuous versus impulsive vibration since, in this case,
the physiological sensors are near the surface of the skin and should not have any significant
dynamic response (i.e., resonance) characteristics in the low-frequency range of concern, so
that impulsive vibration inputs would be perceived differently. Clearly, there is much
speculation involved here that deserves a more careful evaluation. A cursory examination of
the literature does not indicate anything substantial on this issue of human response to

transient, low-level impulsive vibration and further research may be called for.
1.5 Duration Effects on Human Response to Vibration

The ISO standards on whole-body vibration (ISO, 1985) specify allowable levels of
acceleration as a function of both frequency and time. The values shown in Figure 1 for the
"Reduced Comfort" criteria were for a 24-hour exposure. Values for shorter exposure
durations are simply increased in level by a constant amount at all frequencies. The resulting
trade-off between level and duration of exposure is shown in Figure 4a in terms of the rms
acceleration level, in decibels, relative to the value for a 24-hour exposure. Over a substantial

portion of the range of shorter durations, the level vs duration trade-off follows an equal

energy rule as, illustrated in the figure. Over the range of durations from 16 minutes to
4 hours, the allowable vibration exposure corresponds to a constant value of what will be
called the Acceleration Exposure Level (abbreviated AEL and symbolized as LAE), that is 4.1
+0.5 dB above the Acceleration Exposure Level for a 24-hour exposure. This new quantity,
Acceleration Exposure Level, is recognizable as equivalent to Sound Exposure Level in noise

exposure and can be given, in decibels re: (1ug)? ssec., by:
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T
Lag = 10+1g [ [A2()dt/[A] 8] 3)
0O

where A, is a reference acceleration equal to 1 pg and 8t is a reference duration equal to
1 second.

The failure of the criterion levels to follow this equal energy rule at the shortest
durations can be attributed to the fact that the rms acceleration levels approach high, potentially
intolerable, levels so that the acceleration amplitude, rather than the time-integrated acceleration
exposure, becomes the limiting criteria. The basis for the deviaton in the criteria from an equal
energy rule for exposures between 4 and 24 hours is not clear. However, this deviation is not
large — only about 4 dB. Thus the ISO whole-body vibration criteria (ISO, 1985) follow,
approximately, an equal energy rule or constant value for AEL for durations greater than
16 minutes. However, this duration is clearly much greater than the durations on the order of
0.2 to 1 second that we are concerned with for response to sonic-boom-induced vibration from

one event,

To explore this problem further, it is useful to examine the more conservative
guidelines developed in 1977 by Working Group 69 of the Committee on Hearing, Bio-
acoustics and Biomechanics (CHABA) for evaluation of environmental impact of vibration in
residences (CHABA, 1977). These guidelines are shown in Figure 4b in terms of overall rms
(continuous) or peak (impulsive) acceleration levels in residences that would be expected to be
acceptable (i.e., less than 1 percent of people would complain). Although not pertinent here, it
is desirable to point out that these overall acceleration levels are values that would be measured
with a frequency-weighting network designed to approximate the complement of the average of
the ISO criterion curves of acceleration versus frequency for horizontal and vertical whole-
body vibration (CHABA, 1977).

Evaluation of the curves in Figure 4b indicate that for daytime exposure to conunuous
vibration lasting no more than 100 seconds, the allowable vibration is equivalent to a constant
ms Acceleration Exposure Level (AEL) of 77.3 dB re (1pug)? + sec. for less than 1 percent
complaints and 97.3 dB re: (1ng)? « sec. for less than 20 percent complaints. From the
Composite Perception Threshold criteria curve in Figure 2, at frequencies in the range of 4 to
12 Hz (where the ISO frequency weighting is minimal and corresponding to the lowest
biodynamic resonance frequencies indicated in Figure 3), the perception criteria correspond to
an rms acceleration level of 57 to 67 dB re: 1pug. Assuming a minimum duration of the order
of 1 sec for sonic boom-induced vibration, this perception threshold would correspond to an
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Acceleration Exposure Level of 62 +5dB re: (1 pg)2+ sec. Thus a range of about 20 dB
(a factor of 10 in magnitude of acceleration), is suggested as the approximate range between a
detection threshold and a lower limit for acceptability of whole-body vibration at low
frequencies. This range appears to correspond to values of AEL from 62 to 77 dB re: (1 pg)2
sec. This wide range in an acceptable (or detectable) AEL is comparable to the wide range in
acceleration magnitude for such levels as shown in Figure 1 and 2. A brief look at one specific
study on response to transient vibration (Wiss and Parmelee, 1974) indicates similar results.

In a study of passenger vibration discomfort criteria, Clevenson et al., 1978, found that
the threshold for discomfort for vertical vibration was reached at a wide-band (1 to 20 Hz)
random rms acceleration level of 0.027 g. This threshold was essentially independent of
duration which varied from 0.25 minute to 60 minutes. At higher vibration levels, the
discomfort rating by the subjects actually decreased slightly with increasing duration of
exposure — a trend in the opposite direction from what would be expected on the basis of the
“equal energy" rule suggested earlier. This trend was presumed to be due to adaptation by the
subjects to the test stimuli. In contrast, a study by Young, 1975, indicates that an energy
measure may be appropriate for evaluation of human response to impulsive-type vibration.
Clearly, further research is needed to resolve the effects of duration on response to transient
vibration. However, for purposes of this report, it will be assumed that the more conservative
model associated with the use of an Acceleration Exposure Level (Equal Energy) criteria is

appropriate.
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2.0 CRITERIA FOR HUMAN PERCEPTION OF RATTLE

It is expected that "rattle” of interior furnishings in a room, such as wall-hung pictures,
interior doors, loose windows or bric-a-brac on shelves, will be perceived primarily as an
audible sound rather than as a visually detected vibration. This is not to say that human
perception of a vibrating surface might not occur from a visual stimulus at a lower vibration
level than from an acoustic stimulus. However, perception of a visual stimulus requires that
one's visual field of view is oriented towards the vibrating surface while an auditory stimulus
would not ordinarily require any such selective orientation of a listener. Thus, for purposes of
this study, perception of rattle will be presumed to occur when: (1) an object will, in fact,
“rattle” upon exposure of a building to sonic boom, and (2) the "rattle” sound will be clearly
audible.

A number of studies have attempted to assess human response to rattle sounds as heard
indoors and the following trend seems to apply. The subjectively judged magnitude of aircraft
noise inside a room does not appear to be changed by the introduction of a typical rattle sound
(Cawthorne, Dempsey and DeLoach, 1978). However, the subjectively judged annoyance of
such a sound does appear to be increased when it generates an audible rattle or sound, or
causes perceptible building vibration. For an aircraft noise-induced rattle or flow vibration
stimulus, the increase in annoyance was equivalent to an increase in the aircraft noise of about
12 to 22 dB (Cawthorne, Dempsey and DeLoach, 1978). For helicopter noise, the equivalent
increase in stimulus ranged from about 5 to 20 dB (Schomer and Neathammer, 1985). For a
simulated blast sound, the presence of rattle indoors was equivalent to an increase in stimulus
level in the range of 6 to 13 dB (Schomer and Averbuch, 1989). In all three studies, the
effective (i.e., equal annoyance) stimulus level increased as the rattle-inducing noise level
increased. In summary, there seems to be no question that the judged annoyance of a sound,
able to excite rattle inside a building, is substantially greater than the judged annoyance in the

absence of rattle. Consider, now, the criteria for the detection and generation of rattle sounds.
2.1 Acoustic Detection of Rattle Noise

It is expected that once rattle occurs, it will ordinarily be readily audible. To provide
some minimum validation of this hypothesis, a very limited and relatively crude experiment
was conducted. The sound level spectra of several wall-hung rattling objects were measured at
a distance of 1 meter from the wall on which they were hung. The objects were wire-hung
pictures of various sizes in a typical office. The pictures were manually "rattled” by pressing
lightly but rapidly on a portion of the frame in order to displace it from a stable position and
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allow the picture to impact the wall. The impact force was provided by the inherent inertia of
the picture returning to its stable position and not by any manual vibration input. Although
relatively crude, the experiment provided a reasonably consistent pattern, shown in Figure 5,
for the one-third octave band sound pressure level spectrum from impact noise for six different
pictures ranging in size from 17 x 21 inches to 29 x 35 inches. Two of the six pictures were
glass-covered. For comparison, a bare wooden coat hanger hanging on a coat hook on a
wooden door was also "rattled" in a similar manner. The sound level spectra, each measured
as a 10 sec. Leg, are compared in Figure 5 with the ambient sound level measured in
approximately the same location. The "rattle” spectra shown in the figure have all been
corrected for this ambient level. With the exception of most of the one-third octave band levels
for the coat hanger rattle spectrum below 200 Hz and the average one-third octave band level at
40 Hz for the six pictures, the signal to noise ratio was sufficient, especially above 125 Hz, to
obtain a clearly credible spectrum measurement. (Very limited, uncalibrated data on the sound
level of "rattle sounds" — mostly artificially generated by rattling a 4 in x 4 in air filter frame
and screen — exhibited comparable maximum spectral levels but shifted to a higher frequency of
about 4 kHz [Schomer and Averbuch, 1989]).The general nature of the observed spectra do
not appear to be inconsistent with theoretical expectations for impact noise (Richards, 1983;
BBN, 1974). However, a more thorough study of the literature should be carried out relative

to noise from rattling or impacting objects.

The average A-weighted sound levels measured from this limited study were as

follows.
Ambient Background 39dB(A)
Rattle Noise - Average * 1 Std. Dev. for Six Pictures 60dB(A)x2.6dB
Coat Hanger Rattling Against Door 63 dB(A)

It does not require any sophisticated signal detection analysis to recognize that the rattle sounds
would be clearly audible in this typical office background noise. However, even in a noisier
environment with, for example, radio, TV, conversation or appliance noise in the background
with average noise levels in the range of 56 to 62 dB(A) (e.g., Sutherland, 1978), it is still
expected that rattle noise with levels such as reported herein would be clearly audible most of
the time due to its unique character. Thus, for purposes of this report, perception of rattle will
be assumed to occur whenever "rattle” physically occurs — that is, whenever wall-hung pictures

or plaques rattle against a wall. Rattling of bric-a-brac (e.g., plates and dishes, etc.) on a shelf
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is a less well-defined problem due to the wide range of randomly-occurring static stability
conditions (i.e., the propensity for rattle) for such objects, and will not be treated here. More
definitive data on all types of rattle noise obtained under more carefully controlled conditions
would obviously be desirable.

2.2  Occurrence of Rattle from Acoustic Excitation

Several studies provide guidance relative to when rattle is expected to occur. One of
the first citations of rattle from a sonic boom is in Hubbard and Mayes, 1967. Measurements
of the interior response of a building to a sonic boom, shown in Figure 6, include a sound
pressure time history (labeled NOISE in the figure) which was recorded with an audio

frequency response microphone. According to the experimenters:

"It is believed that this audible portion of the pressure signal is associated with the rattling
of the building structure and furnishings because of the primary mode responses in the
building."

A very rough analysis of the pressure signal indicates at least two peaks in its spectrum — one
indicating a peak sound pressure level of about 97 dB at a fundamental frequency (probably a
room mode) of about 7 Hz and another peak level of about 87 dB at 150 £ 20 Hz. Note that
this latter level is considerably higher than any of the peaks in the “rattle noise” spectrum
shown earlier in Figure 5. Even allowing for a 10 dB crest factor in this signature, it seems
more likely that the "noise" record in Figure 6 is simply a record of the interior sound level of
the sonic boom as it would appear when transmitted through the building structure. Rough
estimates of this expected internal sound level based on the measured external acoustic
signature in Figure 6 and a model for the exterior to interior noise reduction for a typical
building (Brown and Sutherland, 1991) indicates that the measured internal "noise” level in

Figure 6 would be consistent with this conjecture.

Other studies related to rattle provide information on:

1) Wall acceleration levels at which rattle occurs.

2) Prediction models for these rattle acceleration levels for windows, and for wall-
hung pictures or plaques.

3) Measured sound pressure levels for which rattle occurred

4) Acceleration levels of walls or other building elements for acoustic excitation by
random (e.g., aircraft noise) or impulsive (€.g., sonic boom or blast noise).
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The following will attempt to tie together this clearly interrelated information to validate a
criterion curve for sonic boom-induced rattle. The first three items are considered in this
section.

2.3  Wall Acceleration Levels at Which Rattle Occurs

The most definitive experimental study of rattle of wall-hung plaques or pictures,
carried out by Carden and Maves, 1970, is summarized in Figure 7. Figure 7a shows the
mechanical vibration-excited wall acceleration as a function of frequency that was measured, in
each of two test buildings at Wallops Islands, near where, in each case, two plaques were
mounted. The plaques, weighing 0.676 kg, were 0.502 m long and 0.146 m wide and were
hung on a wall-mounted hanger from a small loop built in to the end of each plaque. The
plaques hung in the normal fashion, very nearly vertical and close to the wall (Figure 3b in
Carden and Mayes, 1970). Based on analysis of the data in Figure 7a and assuming sinusoidal
motion, the mean peak wall acceleration at which rattle was first audible, for low-order wall
resonance frequencies from 16 to 150 Hz, was about 0.028 g peak. The average lower bound
for the wall acceleration threshold over this frequency range for plaque rattle was about 0.023 g
peak. Note that in this low-frequency range, the rattle threshold for the plaques appears to be
essentially independent of frequency. This will be shown later to be consistent with expected
trends.

In the same test program, rattle was also measured for a mirror hung in two different
ways in one structure. The results are summarized in Figure 7b in terms of the wall
acceleration as a function of the applied mechanical vibraton force with and without the mirror
in place. The sinusoidal excitation was applied at a wall resonance frequency of 15 Hz. The
mirror, weighing 6.5 kg, was 0.61 m high by 0.711 m wide and was apparently hung by two
small frame-mounted metal loops from two wall-mounted picture hooks, one pair of each on
each side of the mirror frame. Scaling from Figure 3b and 3c in Carden and Mayes, 1978, the
distance of the hooks from the top of the picture frame was approximately 0.21 m. For one
test, the wall-mounted hook was mounted directly against the wall providing a hanging angle
for the mirror of 1.30°. For the second test, the picture hooks were moved out 1.27 c¢m from

the wall to provide a larger hanging angle of 3.14°.

The results of this particular mirror test are shown later to be generally of the right order of
magnitude but reversed from the expected trend of higher rattle acceleration thresholds for a
higher hanging angle. (Note that the NASA authors indicate that the text on page 14 of Carden
and Mayes, 1978, is incorrect in stating: "With the hanger flat against the wall, the rattling
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(impacting) is initiated at a lower force level." The data in Figure 7b, taken from the report,
correctly shows that, in this case, the lower force level is required to initiate rattle associated
with the higher hanging angle.

2.3.1 Predicted Variation in Rattle Acceleration Threshold with Hanging Angle for

Wall-Mounted Objects

The expected variation in rattle vibration threshold with the hanging angle of wall-
mounted objects was evaluated experimentally by Clevenson, 1978. As shown in Figure 8,
his tests of rattle threshold for a simple hanging ball resting against a mechanical vibrator
indicated that the critical rattle acceleration magnitude varied directly with the hanging angle, a.
In fact, for his particular configuration, he expected, as shown below, that the rattle threshold
in peak g's would be numerically equal to the hanging angle (in radians) and independent of the
mass of the "rattler.” The experimental data partly confirm this theoretical trend. Although the
rattle threshold exhibited a small mass effect, it did vary linearly with hanging angle for both
masses. However, the average peak rattle acceleration for both masses was about 0.7 imes the
hanging angle (in radians). Note that the vibration excitation was at a frequency of 20 Hz, well
above the natural pendulum frequency of the hanging ball and hence the rattler would act,

dynamically, like a mass.

Referring to the insert in Figure 8, summing the moments about the pivot point of the
hanging ball with a mass M, mass moment of inertia I, about the stationary pivot point, and a
pendulum length L, the rattle threshold can be defined as follows. (Note that this analysis only
treats wall motion at the point of impact of the ball. The pivot point is assumed to be
stationary.)

MLg sin(@)-F L = Ipa 4)

where @ is the hanging angle in radians, F is the resisting force when the ball is resting
against the wall and where & is the angular acceleration of the ball about pivot point P which is
equal to X/L, where x is the wall acceleration at the impact point. Neglecting the finite size of
the ball, I, is simply ML2 and, when rattle occurs, F equals 0, so Eq. (4) gives for the rattle
threshold acceleration a; (= x/g) for small values of the angle, o

ar = sin(a)=q
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A hanging mirror can be roughly represented as a homogeneous rectangular "plate" with mass
density pm, vertical length L, width W, and thickness T. If the center of gravity of this "plate”
is assumed to be in the middle, and the plate is assumed to be hung from a fixed pivot "line"
located at a distance L/3 from the top edge (an approximation to the estimated conditions for the
data in Figure 7b) then, referring to the sketch, the mass Moment of Inertia, I, can be shown
to be given by:

Sketch of Wall and Hanging Mirror

2173

T
Im = | L,J pm Wr2dxdy = 3 L2[1+3(T/LY] (6a)
0 -

where 12 equals [x2 + y2] where x,y are coordinates in the length and thickness direction for
the mirror, and M equals the mass [pmLWT] of the plate. For this case, Eq. (4) must be
modified for the moment of the mirror mass about the pivot line and the rotational acceleration
about this line is modified by the shorter lever arm (2L/3) between the fixed pivot "line" and the
impact "line” at the bottom of the picture. The modified moment for the mirror mass about the

pivot point can be closely approximated by:*

Moment = Mg [; - %‘- sin a] (6b)

* The authors are indebted to Kevin Shepherd of NASA-Langley for pointing out this
modification.
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Again, setting F = 0 at the onset of rattle, it can be shown that the "rattle” threshold for this
case occurs when the horizontal acceleration a; at the impact point is approximately equal to:

ar = [3T/L - sin(a) ]« [1 +3(T/L)2]! 0]

where it is assumed that both T/L and o are << 1. Thus a very different result is obtained than

the one for the simple lumped mass pendulum model.

For the mirror rattle data presented earlier in Figure 7b, assuming a value for T/L =
1/32 for the mirror (e.g., T=3/4in and L =~ 24 in.), the predicted rattle threshold
according to Eq. (7) would occur for an acceleration at the mirror impact point of about 0.071 g
for the mirror hanging angle of 1.3° and 0.039 g for the hanging angle of 3.14°, less than that
predicted for the smaller hanging angle. In fact the observed values indicated by the data in
Figure 7b were 0.064 g peak and 0.047 g peak, respectively. These values differ by about
-11 percent and -17 percent, respectively, from the expected values. However, the wall
acceleration was not measured at exactly the same location as the plaque. Hence such an
agreement is very reasonable considering the effect of the wall vibration mode shapes on the
potential difference between the wall acceleration at the measurement point and at the plaque
location.

Following the same type of analysis, it can be shown that if a plaque is also modeled as
a uniform plate but supported from a pivot line at the top-back edge (as was the case for the
plaques evaluated by the data in Figure 7a), then the mass moment of inertia would have been:

I, = % M L2 [1 +(T/L)?] (8)

For this case, the "lever arm" for rotational acceleration is the full length L of the plaque but the
moment arm for the gravitational force is L/2 so that Eq. (7) is again modified to predict a rattle

threshold for objects hung from their top edge as a peak acceleration given by:
3¢rT . .
ar =5 [ - sin(@ ] - [1+(T2] ! ©
where it is again assumed that T/L and o are << 1.

If it is assumed that T/L for the plaques was about 1/24 and typical "hanging angles"
for the plaques evaluated in Figure 7a were about 1 to 2°, then the predicted rattle threshold
should have been about 0.036 to 0.01 g, respectively, giving an average of about 0.023 g.
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As stated earlier, the measured lower bound of the plaque rattle data in Figure 7a is also
about 0.023 g.

2.3.2 Design Value for Minimum Rattle Threshold for Wall-Mounted Objects

Considering the many assumptions involved in this simplified analysis, there is,
nevertheless, fair agreement between prediction and measurement for the minimum rattle
threshold for the mirror and plaques and the simpler "point mass" model in Figure 8.
Therefore it is concluded that Eq. (7) and (9) provide reasonable bases for estimating lower
bounds for rattle thresholds for wall-hung objects within a factor of about £50 percent (e.g.,
+3.5 dB). For analysis purposes, it will be assumed that an absolute value for the minimum
rattle threshold for wall-hung items will be the average of the measured values in Figure 7; i.e.,
0.045 +0.021 g, peak. It will be further assumed that this rattle occurs in the frequency range
of low-order wall resonances — about 15 to 150 Hz. It should be pointed out that this limited
analysis makes no effort to consider the second-order effects of the mass of rattling objects and
the type or area of contact surface (Clevenson, 1978).

2.4 Rattle Thresholds for Structural Elements

In addition to wall-hung items, sonic boom excitation can cause rattle by inducing
vibration of windows and doors. For example, windows with panes that are loose in the sash,
or window sashes that fit loosely in their frames, are readily prone to rattle from sonic boom
excitation of a dwelling. External doors are not as likely to rattle due to weatherproofing or
security provisions but interior doors, which ordinarily have some play between their stops and
door latch, may be readily excited acoustically (i.., rattled) by the sonic boom signature inside
a dwelling.”

Two analytical studies of the (non-linear) rattling response of windows (Crandall and
Kurzweil, 1968) and simple beam models for structural elements (Benveniste and Cheng,
1967) have focused on the increased stress in such structures due to the added effect of an
impact load imposed when a structural element, initially driven by a sonic boom load, hits its
stops. No experimental or theoretical studies could be found on the magnitude of peak

* A very striking example of this phenomenon was observed by a member of Wyle's staff recently when a
military jet apparently went supersonic twice within a period of about 30 seconds, several miles west of Los
Angeles. The observer heard no sonic boom (although some others in the community did hear a boom) but
heard and saw a severe rattling of an interior door which died out after a period of several seconds. The rattling
then recurred and he observed and heard a 4' x 3' aluminum sliding window rattling, again for several seconds.
The acoustic stimulus, in this case, is believed to have been the type of rumbling sinusoidal-like transient that
can occur near "cut-off” well to the side of a sonic boom track.
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accelerations which trigger this type of rattle. The lack of analytical predictions is not
surprising since unknown or unpredictable friction forces would probably control this rattle
threshold for door and windows. However, data are available on the magnitude of impulsive
blast and sonic boom peak pressures (Siskind er al., 1980, and Eldred, 1985) and of steady
state sound levels (Tokita and Nakamura, 1981) which tend to cause rattle of such elements.

The most useful is the analysis presented in Siskind ez al., 1980, and shown by the data
on the right side of Figure 9. The data points represent measured community annoyance
response vs estimated peak (linear) pressures for sonic boom tests conducted at Oklahoma City
(Borsky, 1965) and Edwards Air Force Base (Stanford, 1967). The "highly annoyed"
response level for these tests was dominated by "house rattle” as the strongest complaint.
Accepting a "5 percent highly annoyed" as an approximate threshold, the mean peak pressure is
0.0046 psi (0.67 psf). From data on acceleration response to sonic boom evaluated by
Hubbard, 1982, typical wall acceleration response levels to sonic booms can be specified in
terms of a transfer function apk/Ppi of about 0.18 £80 percent g(pk)/psf(pk). (See also Sec-
tion 2.4.) Again, considering the lower bound of this range, or 0.036 g(pk)/psf(pk), the peak
sonic boom pressure of 0.67 psf translates to a peak wall acceleration of 0.024 g — surprisingly
in agreement with the values observed from the preceding test data for a rattle acceleration

threshold for wall-hung objects.

The study by Eldred, 1985, involved analysis of measurements at the U.S. Army Civil
Engineering Research Laboratory of the structural response of a partial mock-up of a residental
building to simulated blast pressure pulses. The pulses had a duration of about 26 ms to
41 ms and peak pressures up to 121 dB (0.47 psf). Rattle rarely occurred when the free field
peak pressure was less than 108 dB (0.11 psf), was almost always present when the peak
pressure exceeded 113 to 115 dB (0.19 to 0.24 psf), and always occurred (for windows, bric-
a-brac, and china) when the peak pressure was 121 dB (0.47 psf). Thus these data indicate a
peak overall rattle threshold pressure of 0.11 psf for the type of simulated blast pulses
employed for this program. While this threshold pressure for rattle onset is not necessarily
representative for sonic booms, it is possible to utilize this information to deduce what the
acceleration levels were on the structure at which rattle occurred. These acceleration values for
rattle should be valid for sonic boom as well as the simulated blast pulse employed here.

Note that these data might also be used to help establish a statistical model for the onset
of rattle. If it is assumed that the range in pressure between which rattle first occurs and
always occurs corresponds to a "4 to 6 sigma" range of a Gaussian distribution of rattle
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excitation levels, these data would suggest that the standard deviation for the onset of rattle, in
a given structure over all types of objects or structure that could rattle, would be about (121 -
108)/6 to (121 - 108)/4 or 2 to 3 dB.

For this test structure, the mean Specific Acoustic Mobility (the non-dimensional ratio
of the acceleration response to acoustic loading times the surface weight divided by the incident
pressure) for the storm windows, walls, door, and ceiling was about 18. This is the mean
value at the fundamental resonance frequency of the various structural elements where the
vibration response is greatest for acoustic loading and is well within the range of expected
values, as will be shown later. The range in variation about this mean value was about
1320 percent (£10 dB). The threshold overall peak pressure of 108 dB (0.11 psf) corre-
sponds to a peak pressure in the one-third octave band containing a typical wall resonance
frequency of about 98 dB (0.035 psf). The average surface weight of the test structure walls,
windows, door, and ceiling was 4.6 psf. Thus the mean acceleration expected at the rattle
threshold peak pressure is estimated to have been (18 « 0.035/4.6) = 0.14 g. Allowing for the
variation about the mean value for the Specific Acoustic Mobility, a lower bound on this rattle
acceleration threshold would have been about 0.14/3.2 = 0.044 g, a value close to the previous

estimates above for the minimum acceleration threshold for the onset of rattle.

Data on "steady-state" acoustic levels required to induce rattle in various structural
elements are also available from measurements by Nakamura and Tokita, 1981. These data,
shown in Figure 10, represent minimum sound pressure levels at which rattle occurred for the
five different types of structural elements shown. The peak acceleration corresponding to these
acoustic rattle thresholds can be roughly estimated as follows. The surface weight for all five
of the various structures is estimated to be about 3 psf. An average Specific Acoustic Mobility
(Acceleration x Surface Weight/Acoustic Pressure) of 18 is assumed based on the previous data
from Eldred, 1985. An average lower bound for the rattle sound level threshold from
Figure 10 is 75 dB rms or 0.0034 psf, peak. (This is the value for three of the five structures
at the lower frequencies believed to represent the fundamental resonance frequency range of the
element.) Thus, the estimated minimum peak acceleration, apk, in g's for the acoustic rattle
threshold data in Figure 10 is estimated to be of the order of: 18+(0.0036/3) = 0.020 g's,
again, comparable to the previous estimates.

At higher frequencies, well above the fundamental mode, the required acoustic levels
(and corresponding acceleration levels) required to cause rattle increase approximately with

frequency squared.
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3.0 ACCELERATION RESPONSE OF BUILDING STRUCTURE FROM
ACOUSTIC EXCITATION

The vibration response of building structure to sonic booms is evaluated for this report
by two methods:

1. The well-known Shock Response Spectrum method which develops the transient
response to a sonic boom in the time domain, and

2. A new variation on the approach based on the use of the Fourier Spectrum of any
sonic boom wave form. This variation can employ an analytical or experimentally
based model for the absolute value of the steady-state vibro-acoustic transfer
function for a structure to evaluate its transient response to sonic booms. This
approach can be used to compute the descriptor identified earlier which is a measure
of the energy in an acceleration signal — the Acceleration Exposure Level. As
explained later, this descriptor can also be used to define the equivalent peak
acceleration magnitude of a damped sinusoidal acceleration signal with the same

energy as that of the actual acceleration response to the sonic boom.

A key assumption required for application of both methods is that the vibro-acoustic response
of structure is assumed to be linear. Such linear response behavior has been repeatedly shown
by NASA and others, as illustrated, for example, in Figure 11 in terms of peak window accel-
eration levels versus sound pressure (Stephens ez al., 1982) and in Figure 12 by peak stresses
in a dwelling wall stud versus peak acoustic pressure for noise, blast and sonic boom excitation
(Mayes and Edge, 1964). Two exceptions to this linear behavior are: window response to
steady-state random noise at one-third octave band sound levels above about 120 dB (Freynik,
1963) and rattle vibration responses (Crandall and Kurzweill, 1968). However, significant
non-linear behavior for windows should not occur at the transient overpressures of concern for
this report. The non-linear behavior of rattle is also ignored here since only the “linear"

vibration response of structure up to the threshold of rattle is considered herein.

One important result of this assumption of linearity that is employed later is that the
vibro-acoustic response or transfer function characteristics of structure developed experi-
mentally or theoretically on the basis of steady state acoustic excitation can also be readily
applied to the evaluation of transient response to sonic boom. This has been well demon-
strated, experimentally, by comparison of response of a test structure to noise and simulated
blast pulses (Eldred, 1985).
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3.1 Shock Response Spectrum for Sonic Booms

As discussed in more detail in Appendix A and illustrated by the following sketch, the
peak response of a single degree of freedom (SDOF) mass-spring system to a transient
excitation, P(t) such as a sonic boom, can be defined by a Shock Response Spectrum. An
SDOF model can describe, in simplified form, the basic fundamental vibration response mode
of a complex structure. This Shock Response Spectrum is a function of the dimensionless
parameter, foT where f; is the undamped natural resonance frequency of the SDOF system,
and T is the full duration of the (sonic boom) excitation. This Shock Spectrum defines the
magnitude of the peak response of the SDOF system at any time, t, after the beginning of the
sonic boom.

P(t)

1 P(t)

P Xmox

x .
rmax, min

‘ Xmin )r

x() &

v = Vk/m

s = Po/k

x
[}

Sketch of Mass-Spring Undamped SDOF Systemn Driven by Sonic Boom N-Wave

This peak response is obtained from a general solution to the equation of motion for the SDOF
system illustrated in the sketch with a mass, m, spring constant, k and undamped natural
resonance frequency, fo = (1/2n)vVk/m. (Note that the system mass, m and excitation, P(t) are
defined in terms of values per unit surface area, i.e., surface mass and pressure, respectively.
When the acceleration response is expressed in non-dimensional g's, the ratio of acceleration to
the acceleration of gravity, g, the surface mass, m is more conveniently specified in terms of
surface weight, w = mg.)

This general solution for the response is the combination of the forced response of the
system while the excitation (i.e., sonic boom pressure wave) lasts and the transient response of
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the system following the excitation. The envelope of the peak forced response (e.g., peak

acceleration) is called the Primary Shock Response Spectrum. The envelope of the peak
transient response following the excitation is called the Residual Shock Response Spectrum.
As discussed in Appendix A, the amplitude of this Shock Spectrum is conveniently given in
one of the following non-dimensional forms.

For the peak displacement response, Xmax. this form of the Shock Response Spectrum
is often referred to as the Dynamic Amplification Factor, (DAF) and is given by:

DAF = Xmax or Xmax * (27l7f0)2 * W
Xs Py

(10)

where w = "surface weight" of the (SDOF model) structure with the same units as the

pressure, P(t). (The latter has an initial peak value, Po.)

In this form, the Shock Response Spectrum or DAF is the ratio of the peak dynamic
response, Xmax to the static response, Xs for excitation by a constant or static pressure, Po
with the same magnitude as the peak pressure of the transient excitation. An example of such a
Displacement Shock Response Spectrum is shown in Figure 13 for excitation of an undamped
SDOF system by an ideal N-wave.

For the peak acceleration response Amax, the corresponding non-dimensional
Acceleration Shock Response Spectrum can be expressed in one of the following two forms
(the second is the preferred form which will be used throughout this report).

Amax* g _ Amax*W _ (Peak Acceleration, g's) ¢ (Surface Weight, psf) an
(2nfo)2Xs Po - (Peak Pressure, psf)

where g is the acceleration of gravity, (9.8 m/s2).

As shown by the example Acceleration Shock Response Spectrum in Figure 14, this
Response Spectrum is partly dependent on damping of the dynamic system, as measured by its
Resonance Amplification Factor, Q. It is also dependent upon the non-dimensional
system/excitation parameter, foT.

The envelope of the maximum values of the combined Primary and Residual
Acceleration Shock Response Spectra for the following sonic boom wave shapes are shown in
Figure 15 for response of a SDOF system with a Q of 10. In all cases, the spectra are shown

as a function of the non-dimensional parameter, foT.
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Figure 15a shows the Acceleration Response Spectra for the following three sonic
boom wave forms:

Curve 1) Ideal N-wave sonic boom.
Curve 2) Reference sonic boom with rise/fall time of 8 ms.

Curve 3) Symmetric delayed ramp with initial rise to Py/2 in 8 ms followed by a rise to Py in
35 more ms and a mirror image pattern at the end of the boom.

Figure 15b shows the spectra for:

Curve 4) Non-symmetric flat top with initial time of 8 ms, constant pressure of P, for 35
more ms and then linear decay and return to zero pressure as for the reference

N-wave.

Curve 5) Ideal N-wave diffracted around one end of a typical residential building with a
diffraction time of 50 ms as defined later.

Curve 6) Racking acceleration response of the same building also explained below.

Also shown by the solid line in each part, for comparison, is the Acceleration Shock Response
Spectrum for an undamped system driven by an ideal N-wave. As indicated, this has a
maximum value of about 2.2 for f,T = 0.88, and a maximum value of approximately 2 for

foT = n where n = 2,3 4, etc.

Examination of these curves shows that at the first peak in the spectrum, where f,T =
0.9, all of the sonic boom wave forms, including the ideal N-wave, would have nearly the
same maximum acceleration response. However, for a value of T = 350 ms, this would
correspond to structural resonance frequencies of about 2 to 3 Hz — a range of significance only
for very large windows or possibly roofs of large buildings. Such low resonance frequencies
are not typical for residential buildings. For higher values of f,T, as expected, the Acceleration
Shock Spectra for damped systems for all of the shaped booms become significantly lower
than the value for the ideal N-wave excitation of an undamped system. In particular, the shock
spectrum for Curve 3, the symmetric delayed ramp, begins to show a marked deviation from
the spectra for the other shapes for f,T > 2.5. However, the resonance frequency, f, for T =
350 ms would still be below the range of fundamental resonance frequencies (15-25 Hz) of
most residential structures. Evaluation at higher values of f, would be desirable.
Unfortunately, this could not be reliably carried out with the particular computer program used
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to compute these shock spectra numerically according to the method explained in Appendix A.
The alternate "equivalent peak acceleration” approach mentioned earlier is used, as explained
later, to extend the analysis to cover higher resonance frequencies.

3.1.1 Corrections to Nominal Free Field Sonic Boom Pressure to Account for Angle of

Incidence and Diffraction

The analysis so far has assumed that the peak sonic boom pressure, Py which loads the
structure is the same as the conventional "ground-reflected” value which, by the convention
used to define sonic boom pressures, is normally specified as the "free-field" sonic boom
pressure. This would be equivalent to assuming that the structural surface under sonic boom
loading was set in an infinite rigid reflecting plane for which the measured peak pressure, Py is
approximately two times the true incident peak pressure. For sonic boom loading on the wall
of a finite size building, the effective loading must be modified to account for: (1) the effect of
changing the incidence angle from normal to the wall surface, and (2) the effects of diffraction
of a sonic boom wave form incident in a direction normal to the building wall. Both effects
have been evaluated analytically (ARDE and Associates, 1959).

3.1.2 Angle of Incidence Correction

The angle of incidence effect was also evaluated experimentally during the SST sonic
boom tests in the 1960s. An empirical relationship between an effective peak pressure, Pe
measured on a building wall and the nominal free-field (i.e., ground reflected) peak pressure
P, developed from these data can be expressed as (Hershey and Higgins, 1976):

P/Py = 10(0.147 « cos(8) - 0.1258] (12)

where 8 is the angle, on the ground, between the aircraft flight track and a line normal to the
building surface. In the absence of any preferred value for the angle 8, an equal probability for
any value corresponds to an average value of Po/P, from Eq. (12) of 0.75 (Sutherland, Brown
and Goerner, 1990). It is assumed that this effective peak pressure accounts only for the
change in reflection of the initial sonic boom wave front due to the non-normal incidence angle
on a given surface. Itis further assumed that it does not account for the change in the average
sonic boom pressure load on a building wall caused by the effect of diffraction of the sonic
boom wave front by the building geometry.
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3.1.3 Diffraction Correction

A detailed early study of sonic boom loads on buildings provided a rational approach
for evaluation of diffraction effects of sonic booms on buildings (ARDE Associates, 1959).
The concept, illustrated in Figure 16, was based on applying well established methods for
evaluating blast loads on buildings. For the latter, the incident shock wave front could be
considered as a step function. Diffraction was accounted for by multiplying this incident
pressure step (taken here as Py/2) by a diffraction correction factor 8. This was equal to 2 at
time zero, falling linearly to a value of 1.0 in a "diffraction clearing time," tp = 3S/U where S
is the smaller of the building height or one-half the width and U is the speed of the shock wave
front, taken here to be the ambient speed of sound for sonic boom pressures of concemn here.
As illustrated in Figure 16, the incident sonic boom pressure, assumed to be an ideal N-wave,
is treated as the superposition of two ramp-step functions — separated by the duration T with
each part multiplied by a corresponding diffraction correction factor. The resulting time
history, P(t) of the diffracted average sonic boom pressure on the front wall of the building is
the last part of the figure. It can be defined for the three time periods by:

O<t<tp, P(t) = (Po/2)+[1-2vT]*[2-/tp] (13a)
tp<t<T, P(t) = (Po/2)+[1-2¢T] (13b)
T<t<(T+p), P(V) = (Py/2)~[1-(/T-D]*[tp/T] (13c)

This modified time history was used to evaluate the Acceleration Shock Spectrum for Curve S
in Figure 15 using a value for the clearing time, tp of 50 ms that could be representative for a
two story residential dwelling.

For the case of racking response of a building, a similar approach, illustrated in Figure
17, is used to define the net front-to-back pressure load on a building. In this case, two
additional time delays are involved, the delay time L/U for the wave front to travel the length of
the building, and a slightly longer "clearing time," 4S/U, for the back pressure load. It should
be pointed out that these diffraction models have been well verified for blast waves and are
considered good approximations for analysis of diffraction effects for sonic booms (ARDE &
Associates, 1959).
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3.1.4 Diffraction Correction for Shaped Sonic Boom Wave Forms

Although the Shock Spectra for the two diffraction cases (Curves 5 and 6 in Fig. 15b)
were necessarily based on a pure N-wave, a variation of this technique could also have been
applied to the analysis of shaped sonic boom wave forms in the following manner. As
illustrated in the following sketch, such a shaped wave form with a finite rise time could be
considered as made up of a series of superimposed positive and negative step pulses

representing the incident wave form, P(t) at any ume t.

P(t) ()

T U — '
P(t) il ¢ ¥
P 1.04

L t . l
—’l l“ _ﬁ 1‘ T+D

N

The step pulse with a pressure amplitude, p(T) occurring at time t(< t) would be multiplied by a
corresponding diffraction correction factor 8(t-T). Since the amplitude of each elemental step,
p(t) at time T can be determined from product of the slope [dP(t)/dt]| of the incident pressure at
this time T and the time increment, dt, then the time history of the total diffracted pressure load,
P,(t) could be given by a convolution integral:
dP(@) |

d

Po(t) = Jl O(t-1) ——= +d1 (14)
=0 T

Once this diffracted, shaped sonic boom load was established, then the same time-domain
analysis defined in Appendix A could have been used to establish the new Acceleration Shock
Spectrum for the diffracted, shaped sonic boom wave form. One would expect that the results
of such an analysis would show the same reduction (of the order of 25%) in the maximum

Acceleration Shock Spectrum at the first peak where foT = 0.9 shown in Figure 15 relative to
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relative to the other shaped boom wave forms. However, since the effect of diffraction seems
to become much less significant for higher values of f,T, this analysis of diffraction effects for
shaped booms was not pursued further.

3.1.5 Shock Spectra — A Summary

In summary, in the absence of diffraction, the Acceleration Shock Response Spectra for
various types of sonic boom wave forms differ only slightly from that for an ideal N-wave
excitation for an undamped system at values of f,T less than 1. At higher values of this
parameter, the Shock Spectra for the damped systems begin to decrease by as much as 100%,
with the delayed, symmetric ramp showing the potential for the greatest reduction. The next
section explores the trends in Shock Response Spectrum at higher values of the frequency
parameter, f,T and for different values of damping using a frequency-domain approach.

3.2 Application of Acceleration Exposure to the Prediction of Acceleration
Response of Structure to Sonic Booms

The concept of Acceleration Exposure has already been introduced in Section 1.5 as a
possible alternate descriptor for assessment of human response to vibration environments.
However, as discussed in Section A.3 of Appendix A, another application for this descriptor is
to provide an alternate, and computationally convenient, measure of vibration response of a
structure to a transient excitation. The key aspects of this application can be summarized as
follows. (The reader is referred to Appendix A for the detailed discussion.)

3.2.1 Acceleration Exposure and Equivalent Peak Acceleration

The total "energy” of a transient acceleration signal, A(t) defined as the Acceleration
Exposure, with units of gzosecond, which is the integral, over the time duration T of the event,
of the square of the acceleration A(t) time history. However, from Parseval's theorem, this
Acceleration Exposure, Ex can also be expressed by the integral, over frequency of twice the
square of the absolute value of the Fourier Spectrum of A(t). Thus, EA can be given by:

Ea = [ A2(t)dt = 2 TIA(f)lz df (15)
0]

O-—.,_i

This measure, when expressed in decibels as an Acceleration Exposure Level in dB re:
(1ug)2es has the useful interpretation discussed in Section 1.5. For application to structural
vibration, it is useful to define an Equivalent Peak Acceleration which is the initial peak value
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of a damped acceleration response of a SDOF system to an impulse and which has the same

energy — the same value of E4 — as an actual acceleration response to a sonic boom. Typical
experimental data on the acceleration response of buildings to sonic boom often resemble such

a simple transient signal. It is shown in Section A.3 of Appendix A that this Equivalent Peak
Acceleration, A(eq)p is very closely approximated by the following simple expression:

Aleq)pk = [4nfy+Ep e T2Q)12. [Q-1/4Q]1/2 (16)
where Ep = the Acceleration Exposure with units (g)2 » seconds, and

fO’ Q

the undamped resonance frequency and Resonance Amplification Factor of

the SDOF system under consideration.

To apply Eq. (16), it is necessary to obtain an estimate of the Acceleration Exposure of a
structural response. This is provided by the second part of Eq. (15) with the use of the
absolute value of the Fourier Spectrum, IA(f)! of the acceleration response time history, A(t).
This quantity can be derived analytically or experimentally by using one of the following

nominally equivalent expressions. For an analytical approach, IA(f)! is given by:

_ . A(D)w
A = [ Ipolw ] 155! a7
where  IP(f)l = the absolute value of the Fourier Spectrum of the pressure excitation,
w = the surface weight of the structure in the same units as the pressure,

and the dimensionless quantity |A(f)»w/P(f) is the frequency response function for the
acceleration response of a structure with a surface weight w to an acoustic field with a Fourier
Spectrum, P(f). Note that all that is required here are the absolute values of these quantities —
their phase infermation is ignored so that the time history of the response is not recoverable
from these quantities.

To apply the experimental data approach, the Acceleration Exposure for structural
response to a sonic boom can also be estimated from the measured response of the structure to
an acoustic excitation. Applying this approach, one can express the absolute value of A(f),
empirically, by:

A = [IP(@)] /w] « Msa() (18)
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where Mg (f) is an experimentally determined, dimensionless vibro-acoustic structural
response function, called the Specific Acoustic Mobility, and where P(f) and A(f) are both
presumed to be measured in the same filter bandwidth and the surface weight, w is in the same
units as the pressure.

It is important to note that Eq. (17) and (18) are nominally the same; that is, the
dimensionless Specific Acoustic Mobility, Msa is nominally equivalent to the vibro-acoustic
transfer function IA(f)w/P(f)l. They are, in fact, identical if both are evaluated with the same
frequency bandwidth resolution.

3.2.2 Theoretical Approach for Computation of Acceleration Exposure

Figure 18 presents the results of applying the first (analytical) approach to compute
values for an Equivalent Peak Acceleration, A(eq)pk for the case of a SDOF system with a Q of
4, 10 and 25. This was accomplished with Eq. (16) and (17) where the absolute value of the
Fourier Spectrum, IP(f)l for the sonic boom pressure and the frequency response function
IA(f)*w/P(f)l for the acceleration response of the structure are specified by Eq. (A6) and (A7)
respectively, in Appendix A. It is also shown in this Appendix how closely this Equivalent
Peak Acceleration agrees, as expected, with the Acceleration Shock Response Spectrum.

There is one relatively minor but unexpected difference between the Equivalent Peak
Acceleration values and the corresponding Shock Spectra. As explained at the end of
Appendix A, the former has an extra peak for a low value of f,T of about 0.3 that is only
barely present in the Shock Spectrum. This minor peak shows up in the Primary, Negative
response Shock Spectrum as can be seen in Figure 15. (See also Figure A-2 in Appendix A.)
However, since the Equivalent Peak Acceleration is based on both the amplitude and duration
of an acceleration signal, the lower value of f,T (i.e., longer duration) causes an increase in the

Acceleration Exposure and hence an increase in the Equivalent Peak Acceleration.

The effect of damping on this peak acceleration response to a sonic boom now becomes
more apparent. However, it is still important to note that the decrease in the peak acceleration
response to a transient sonic boom excitation is not nearly as large as would be obtained for a
steady state excitation.

To apply this same approach to other sonic boom wave forms, a simple approximation
to the desired result is obtained by adjusting the absolute value of the Fourier Spectrum I(Pf)l to
account for the change in the envelope of this quantity for shaped sonic booms. Figure 19
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Figure 18. Equivalent Peak Acceleration for Excitation of a Damped SDOF System with a Q
of 4, 10 and 25 and a Surface Weight of 5 psf by an Ideal Sonic Boom N-Wave
with a Duration of 350 ms and Peak Pressure of 1 psf.
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provides the necessary guidance to allow such adjustments to these estimates, and shows that
the envelopes of the Fourier Spectrum for a number of different sonic boom wave forms
(Brown and Sutherland, 1991) are not drastically different in the frequency range of primary
concern for this study (i.e., below about 50 to 60 Hz). The largest difference is about 3 to
5 dB between the spectrum levels for a reference (8 ms rise time) boom and the levels for a
symmetric delayed ramp boom. In the figure, the spectra are shown as the Sound Exposure
Spectrum Level, Lg(f), which is equal to 2IP(f)I2 expressed in decibels relative to (20
pPa)2esec/Hz. (See Brown and Sutherland, 1991, for a more complete discussion of this
descriptor.)

To illustrate this approach, the desired squared Fourier Spectrum IP(f)I2 for a reference
sonic boom wave form with a peak pressure 1 psf and rise/fall time of 8 ms was closely
approximated by multiplying the squared spectra IP(f)I2 for an ideal N-wave by a high-
frequency roll-off correction term equal to unity for any frequency f below the rise time cut-off
frequency, f; and equal to (f/f)2 for frequencies above this point where f; is equal to 1/t and
t; is the rise time. This sort of adjustment is clearly evident in Figure 20 when comparing the
spectrum for the ideal N-wave and the reference wave form. The resulting Equivalent Peak
Acceleration for excitation of a SDOF system with Q=10 by the Reference Sonic Boom Wave
Form is compared in Figure 20 to the corresponding curve from Figure 18 for the ideal N-
wave. As expected, the curves are identical until the frequency exceeds the rise time cut-off
frequency f; when the value of A(eq)pk for the reference wave form begins to fall off as 1/f2 in
addition to the 1/f2 roll-off for an ideal N-wave. Note that in both Figures 18 and 20, the
gradual roll-off in Equivalent Peak Acceleration at frequencies above about 50 Hz is apparently
an artifact of the upper bound (60 Hz) chosen for evaluation of the Acceleration Exposure
Spectrum. Had a higher frequency limit been selected, it is not expected that these curves
would show this gradual roll-off.

To summarize, a simple theoretical model has been outlined permitting estimates of an
equivalent peak acceleration response of a SDOF system to any sonic boom wave shape. A
limited application of this approach would indicate that the (equivalent) peak acceleration
response, at low (fundamental) frequencies, of typical residential structures to the various
shaped sonic boom wave forms illustrated in Figure 19 would not be expected to be more than
about 3 to 5dB lower in response (i.e., reduction in peak acceleration by less than about
30 percent to 45 percent) at typical structural resonance frequencies compared to the response

to a reference sonic boom with a nominal 8 ms rise time.
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3.2.3 Application of Experimental Data for Computation of Peak Acceleration Response

A number of full scale vibration response tests have been carried out on actual
dwellings excited by sonic booms (e.g., see Section 3.3 and Appendix B for a detailed review
of one such major program carried out at Edwards Air Force Base in 1966). However, these
prior sonic boom tests have seldom included an analysis of the frequency spectrum of the
acceleration and pressure signals necessary to define the ratio IA(f)/P(f)l. Thus, for this report,
data from two different laboratory test programs were considered. These tests provided data
on the response of full scale mockups of residential structure to acoustic excitation, thus
providing experimental values for the transfer function, i.e., Specific Acoustic Mobility, Msa,
required for Eq. (18).

The most recent of these test programs was considered the most potentially useful since
the configuration of the test structure is considered more realistic. The test included
acceleration measurements of the wall, floor, ceiling and exterior door of a full scale mock-up
constructed inside a laboratory at the U.S. Army Construction Engineering Research
Laboratory. The mock-up, consisting of three outdoor sides of a typical wood frame
residential dwelling, was exposed to simulated blast impulse sounds and to steady-state wide-
band noise. Figure 21 presents a summary of data from one series of tests carried out at this
facility (Eldred, 1985). The figure shows values of Msa derived from the data as a function of
frequency based on the measured acceleration, A(f) and pressure, P(f) signals and estimated
values for the surface weight, w to provide values for Mga = IA(D)ew/P(f)l. In this case, the
spectral data were measured as one-third octave bands levels and thus represent only an
approximation to the fine structure normally present in the spectral content of A(f) and P(f).
An approximation to the average of these measured values for Mg is shown by the heavy line
in Figure 21. (Note that the data in Figure 21 are plotted on a relative frequency scale, f/fo
where f, is the estimated fundamental resonance frequency of the surface being measured.)
Thus, this measured value for Mga could be applied in Eq. (18), along with computed values
for the absolute value, IP(f)| of the Fourier Spectrum for the desired sonic boom wave form and
a representative value for the surface weight, w fora residential wall to estimate sonic-boom-
induced values for IA(H)l. The latter, integrated over frequency, would provide values for the
Acceleration Exposure, E4 and hence the Equivalent Peak Acceleration, according to Eq.(16).

The resulting values for A(eq)pkx computed in this fashion showed the same variation
with frequency as indicated by the values in Figures 18 and 20 but had a magnitude about three
times larger. This was attributed to: (1) the fact that the data included the effect of multi-modal
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Figure 21. Measured Specific Acoustic Mobility Values from Laboratory Tests of a Full

Scale Mock-Up of Three Walls, Floor and Roof of a 13 ft x 19 ft Room in a
Typical Wood Frame Dwelling. Excitation by impulse (blast) sounds and steady
state wideband random noise. (Data from Eldred, 1985.)
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responses of real structure as opposed to the SDOF model employed in Figures 18and 20-a
valid and expected reason for an increase in A(eq)pk; and (2) the lack of adequate frequency
bandwidth discrimination in the one-third octave band measurements. For the latter reason, the
estimates of A(eq)pk using the simple Msa model in Figure 21 are believed to be excessive
since they predict values substantially higher than found in practice based on the actual sonic
boom response data reviewed in Appendix B. However, the concept of using measured vibro-
acoustic response data, properly analyzed, to measure Mga is still considered valid and worthy
of further consideration in the future. It should also be pointed out that the measured values of
Mg have face validity under the conditions under which they were obtained so that they can
be relied upon to provide valid estimates of the vibro-acoustic responses of similar structures

under similar conditions.

The other experimental program from which measured values of Mga could be derived
involved structural response measurements of full scale mock-ups of a large section (e.g., 8 ft
x 10 ft) of a single wall (or roof) located in one side of a large reverberation chamber. The
results, summarized in Figure 22, covering a wider range of structures than in Figure 21, are
generally similar to the latter.

Finally, some of the key parameters employed in this approach to utilize experimental
data on vibro-acoustic response of structure are summarized in Table 1. This presents
measured values of the fundamental resonance frequency, f, for a variety of structural
elements, average maximum values for Mg at this frequency, and calculated values for the

surface weight, w for these structures.
3.3 Structural Response to Sonic Booms from Edwards Air Force Base Test

Data from one major test program involving structural vibration response measurements
of two residential-type buildings carried out at Edwards Air Force Base in 1966 are reviewed in
Appendix B. The general test layout and definition of the accelerometer measurement locations
are shown in Figure 23. The data from this test program provide one of the more complete
data sets for validation of any method to predict structural vibration response to sonic boom.
The analysis of the data consisted of computing a regression coefficient for an assumed linear
relationship between the peak acceleration, Apg reported, and the measured "free field" (ground
reflected) peak sonic boom pressure, Po. A typical result of this process is shown in Figure
24, taken from Appendix B. In all cases, the computed regression line was assumed to have a
zero intercept to obtain a "transfer function” in the form of the ratio, Ap/P in g's per psf. A
listing of these derived "transfer functions" is given in Table B-1 in Appendix B broken down
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Table 1

Values for Average Surface Weights, w, Average Specific Acoustic Mobility, Mg
and Resonance Frequency f, for Various Building Elements (from Sutherland, 1990)

w Average(h) fo + Std. Dev.
Type of Structure Insulated  1b/ft2 M¢,1Std. Dev. Hz
Metal Industrial Walls?
No 1.6-2 5.5+ 100% 14 + 24%
Yes 2-4 3.5+ 100% 14+ 24%
Plaster Ceiling (3/4™) - 9.7 17 +40% 14+ 10%
Wood Frame Building Walls/Roofs
No Between Studs/Joists2  No 5.0 33.0 + 40% 17 £34%
Window Between Studs/Joists?  Yes 5.0 15.0 £ 40% 17 £34%
| On Studs/Joists? No 5.0 10.0 + 40% 17 +34%
| On Studs/Joists? Yes 5.0 4.5+ 40% 17 +34%
with Between Studs? No 5.0 4.5 +40% 17 £34%
Window Between Studsh¢ Yes 5.0 4.5+ 40% 17 £34%
in Wall On Studs? - 5.0 2.0+ 40% 17 +34%
Walls/Ceilings with Plaster Interior - 9.75 10.0 £ 40% 16 £ 29%
Windowsd - €9} 13 £ 85% ) (g)
Masonry Wallsa.©
Brick - 67 5.6 £ 40% 12 +45%
Concrete Block - 67 5.6 +40% 25+ 30%
Stone - 110 5.6 +40% 24 + 20%

4 Sutherland, 1968

b Estimated

¢ Eldred, 1985

d Langley Research Center, 1976

¢ Sutherland, Brown and Goerner, 1990

[ Surface weight of typical window glass: ~ 1/8" - 1.7 Ib/ft2
3/16" - 2.6 Ib/fi2
1/4" - 3.41b/fi2

g fy=[1+ (a/b)2] (ha2) 105 Hz, where a, b= sides, h = thickness (all dimensions in inches)
Average value at resonance frequency of structure
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Figure 24. B-58 and F-104 Sonic Boom Induced Horizontal Acceleration Response of the
East Dining Room Wall of House E-2 (Stanford, 1967).
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by type of structural element (e.g., floor, roof line, ceiling, wall, etc.) measured in the two
buildings.

A word about the source of these "transfer functions" is in order here. The data used to
develop the transfer functions were taken from Tables II and IV of Annex G, Part II of the
preliminary report of the subject tests (Stanford, 1967). These presented values for peak
positive and negative acceleration read from oscillograph records of the test data. A detailed
analysis was reported (Stanford, 1967) of the relationship between displacement response and
peak sonic boom pressure from these tests and from a second phase of tests on the same
structures (Blume, 1967). In addition, the relationship between peak acceleration and peak
overpressure was shown for just two walls and a window in the first test report. However, no
thorough evaluation of the correlation between acceleration and peak pressure for these tests
could be located. Establishing this relationship was paramount to achieving the objectives of
this report and hence required the extensive analysis presented in Appendix B.

A detailed summary of the values for the ratio, Apk/Po is repeated here in Table 2.
Here, the values are grouped conveniently to enable an assessment of differences in response
due to aircraft type, structural element, and for racking and wall responses, orientation of the
responding (vertical) surface relative to the direction of the supersonic aircraft flight path. In
addition to the average value of Apk/P, derived from the zero-intercept regression line through
the data, the standard error of this regression coefficient is also given as a percentage of the
mean value. Although there was considerable scatter in the data, the large number of
measurements provided a surprisingly small standard error for the data. The average value
over all of the elements was about 6 percent indicating the values of Apk/Py measured in this

program can be considered very reliable for the conditions encountered.

No distinction was made between data for small or large amounts of lateral offset of the
flight track relative to the location of the test structures since it was found that the relationship

between peak acceleration and peak pressure was not very sensitive to this distinction.

However, examination of the data in Table 2 suggests an interesting trend relative to
estimates of residential structural response under the flight track of an HSCT.

An aircraft-type effect is apparent in the data in Table 2, primarily for responses by
ceilings, floors and one of the three walls evaluated. This is presumed to be due to the

difference in the duration T of the sonic boom signatures for the two different aircraft and
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Table 2

Summary of Regression Coefficients for Structural Response
from Edwards AFB Tests (data from Stanford, 1967)

Std. Error B58-F104
Structural House Apk/Po of Delta(1) re: SE(2)
A/C Channel Element No. g/psf Apk/Po % -
B58 310 Attic- BDR 2 2 0.109 2.9%
F104 310 Attic - BDR 2 2 0.143 5.1% -27.1% -0.85
B58 309 Attic- BDR 1 2 0.082 5.6%
F104 309 Attic-BDR 1 2 0.104 6.3% -23.2% -0.37
B58 110 Ceiling 1 0.139 7.0%
F104 110 Ceiling 1 0.246 8.5% -55.6% -1.38
B58 109 Ceiling 1 0.099 5.0%
F104 109 Ceiling 1 0.180 5.4% -57.6% -1.54
Average 0.138
Standard Deviation 0.050
XB70 101 Floor 1 0.086 12.0%
B58 101 Floor 1 0.069 3.0%
B58 102 Floor 1 0.043 2.8%
B58 103 Floor 1 0,052 2.6%
Average for BS8 - Floor, one story 0.055 2.8%
F104 101 Floor 1 0.090 3.9%
F104 102 Floor 1 0.062 3.4%
F104 103 Floor 1 0.058 3.0%
Average for F104 - Floor, one story 0.070 3.4% -24.4% -0.49
B58 301 Floor 2 0.048 2.7%
B58 303 Floor 2 0.041 2.9%
Average for BS8 - Floor, two story 0.044 2.8%
F104 301 Floor 2 0.049 3.9%
F104 303 Floor 2 0.060 10.0%
Average for F104 - Floor, two story 0.055 6.9% -21.2% -0.22
Overall Average for Floors 0.060
Standard Deviation 0.015
BS8 302 Kitchen Counter 2 0.053 10.6%
F104 302 Kitchen Counter 2 0.048 3.4% 10.9% 0.08
B58 107 Patio 1 0.012 5.0%
F104 107 Patio 1 0.014 8.6% -13.5% -0.03
Average 0.013

(1) Difference between B58 and F104 values in percent of average for both aircraft for a given element.

 Difference between B58 and F104 values relative to Average Standard Error for both aircraft for a given

element.

() Response in direction approximately 25° relative to flight track.
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Table 2 (Continued)

‘ Std. Error B58-F104
Structural House  Apk/Pg of Delta(1) re: SE(2)
A/C Channel Element No. g/psf Apk/Po % -
B58 105 Racking - east 3) 1 0.044 5.0%
F104 105 Racking - east 1 0.048 6.1% -8.0% -0.07
Average - Racking - east, one story 0.
BS8 308 Rack - east - floor 2 0.065 4.4%
F104 308 Rack - east - floor 2 0.070 7.6% -6.9% -0.08
BS8 306 Rack - east - roof 2 0.080 16.0%
F104 306 Rack - east - roof 2 0.069 12.4% 15.6% 0.08
Average - Racking - east, two story 0.071
Average - Racking east, one and two story 0.058
B58 106 Racking -north @) 1 0.053 3.9%
F104 106 Racking - north 1 0.053 5.7% -1.7% -0.02
Average - Racking north, one story 0.053
B58 307  Rack - north - floor 2 0.060 6.6%
F104 307  Rack - north - floor 2 0.072 10.4% -18.6% -0.14
BS8 305 Rack - north - roof 2 0.049 4.6%
F104 305 Rack - north - roof 2 0.049 5.9% 1.0% 0.01
Average - Racking north, two story 0.058
Average - Racking north, one and two story 0.055
Average - Racking north/east, one and two story ~ 0.057
BS8 111 Wall - east () 1 0.111 4.2%
F104 111 Wall - east 1 0.193 6.1% -54.2% -1.59
Average 0.152
B58 311 Wall - east 2 0.248 3.1%
F104 311 Wall - east 2 0.248 5.8% -0.2% -0.01
Average. 0.248
Average wall - east 0.200
Standard Deviation 0.056
B58 304 Wall - north®) 2 0.170 10.4%
F104 304 Wall - north 2 0.204 6.0% -0.41
Average Wall - north 0.187
Standard Deviation 0.017 6.04% = Average Standard Error

() Difference between B58 and F104 values in percent of average for both aircraft for a given element.

@ Difference between B58 and F104 values relative to Average Standard Error for both aircraft for a given
element,

() Response in direction approximately 25° relative to flight track.
(4) Response in direction approximately 65° relative to flight track.
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hence in the key response-dependent parameter, foT for a given structural element. For the
principal aircraft employed for this test, the average sonic boom durations were 164 ms for the
B-58 aircraft and 79 ms for the F-104 aircraft. Only two or three Apk/P, data points were
available for most of the structural elements from the three XB70 flights (T = 0.267 sec.)
compared to the 30 to 90 data points per element from the two principal aircraft. Thus, no

attempt has been made to evaluate these XB70 data in any detail. However, the following
trend in the average relative value of Apy/P, over all structural elements was noted when the
limited XB70 data was considered.

Aircraft Average T (sec.) Relative Apk/Pgt S.D.
Fi04 0.079 1.0
B58 0.164 0.88 +0.20
XB70 0.267 0.75+0.18

It is not safe to assume that the particular sample of structural types that were monitored for this
program are representative for all similar structures (i.c., one and two story wood frame
dwellings). Nevertheless, the above figures would extrapolate to a trend in the relative

acceleration response, for the same peak overpressure, of about 64 percent of that for sonic
booms from F-104 aircraft for similarly shaped sonic booms with a duration of 350 ms.
However, it must be emphasized that this trend could only be considered potentially valid for
the particular sample of structures measured for this program. It is also important to point out
that while the above trend was observed at nearly all of the measurement positions in both
houses, the average normalized response of the center of the dining room in House No. 2,
induced by two XB-70 flights, increased by 32 percent relative to the value for the F-104
flights for the same measurement position. Recalling the discussion about the Acceleration
Shock Response Spectra or the Equivalent Peak Acceleration, it can be stated that for values of
the parameter, f,T above 1, that on_the average, as f,T increases (e.g., as T increases for a
given structure with a constant fy), the overall envelope of peak acceleration responses will
tend to decrease slightly. Thus the above trend is not inconsistent with theoretical expectations,
but for any one structural element, the peak acceleration response will fluctuate up and down as
T increases in the manner indicated by the oscillations in the shock response or peak
acceleration spectra shown earlier (e.g., Figure 15 or 18).

Further evaluation of this potentially important influence of sonic boom duration on
maximum acceleration response was desirable but progress was hampered by lack of detail on
the dynamic response characteristics of the test structures. However, it was possible to make a
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limited comparison between some of the measured results and predicted values for the
acceleration response. This was possible only for those elements for which an adequate time
history record was available to allow estimates of the resonance frequency, f, and sonic boom
duration, T. The results are summarized in Table 3 in terms of "measured” and predicted
values for the dimensionless peak acceleration, Apk*w/P,. Predicted responses were based on
the computed Acceleration Shock Response Spectra for a reference sonic boom with a rise/fall
time of 8 ms and for a SDOF system with a Q of 10 or 20 to bracket expected values. This
spectrum was considered a reasonable approximation for the average nominal wave form
actually encountered in the Edwards AFB tests. (Perturbations to the nominal wave form
caused by the atmosphere are not expected to be significant for structural response.)

As indicated at the lower right side of the table, the ratio between measured and
estimated values for the peak acceleration response was close to 1.0 only for the walls. The
ratio was about 1.7 for ceilings, which is believed to be due to the more complex structural
response patterns for ceilings not accounted for by the simple SDOF model. For floors and
roof lines (corresponding to racking responses), not surprisingly, the ratio between measured
and predicted acceleration response is substantially less than 1.0.

This comparison between measured and predicted values of Apk/Po was only expected
to show reasonable agreement for response of diaphragm surfaces, such as walls or roofs,
which can be represented by the simple mass-spring SDOF model illustrated earlier at the
beginning of Section 3.1. However, the Edwards AFB test data also provided unique
information on the other more complex types of structural responses, such as racking and floor
or ceiling vibration, which are indirectly coupled by the building frame vibration (Carden and
Mayes, 1970). Thus the measured data for these cases provide an invaluable source for
empirical prediction.

While the Shock Response Spectrum prediction was expected to be in reasonable

agreement with measurements only for walls, the prediction model gives no consideration to:

* expected reductions in response by as much as 100 percent due to the effect of angle of
incidence and diffraction, as discussed earlier in Sections 3.1.1 to 3.1.4.

* potental increases in response by as much as 100 percent due to multi-modal effects
(Sutherland, Brown and Goerner, 1990).

For the other types of structure not directly exposed to the sonic boom wave front, a structure-
to-structure coupling correction is expected to apply. Thus an empirically corrected model for
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structural response to sonic boom, based on these limited data, is suggested which would have
the form:

Apk(ef)w/Po = Ke[Apcew/Po] (19)

where Api(eff) is an effective (or measured) value for the peak acceleration response, and K is
a structural-element-dependent correction factor to be estimated by the ratio between the
measured and predicted values of [Apk*w/P,]. (No angle of incidence correction is included.)

Based on the results in Table 3, it is proposed that first order estimates of structural
responses to sonic booms, assuming normal incidence, can be made with the following semi-

empirical models.

WALLS - Use Acceleration Shock Spectra for a SDOF system with a Q of 20 to
predict the dimensionless peak acceleration, Apg*w/Py, where w is the
average surface weight of the wall and Py is the peak ground reflected sonic
boom pressure. (In this case, the "correction factor,"” K is assumed to be

unity.)

FLOORS - Apply the same process but multiply the resulting value by an empirical

correction factor, K = (.25.

RACKING VIBRATION MODES - Again apply the same process, using for the surface
weight, w, an average for the entire roof structure, and a correction factor,
K =0.35.

CEILINGS — Again, apply the same model as for walls using the average surface weight
for the ceiling structure and a correction factor of 1.7.

In lieu of Acceleration Shock Spectra, one may choose to compute an Equivalent Peak
Acceleration, A(eq)pk*w/P, and an Acceleration Exposure Level, applying the concepts
outlined in Section 3.2. In all cases, the same correction factors identified above would be
applied to the magnitude of the acceleration. To estimate the Acceleration Exposure Level for
such cases, one would add a correction, 20-Lg(K) to the Acceleration Exposure Level
computed in the manner specified in Section 3.2 or Appendix A.

It must be emphasized that the simple procedure just outlined is only intended to
provide the basis for preliminary estimates of structural response. A more detailed evaluation
should consider the first order effects of sonic boom duration more carefully, as well as effects
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of diffraction on the response spectra for shaped sonic booms along the lines outlined earlier.
It is expected, however, that a proper evaluation of either the Acceleration Shock Spectra or an
Equivalent Peak Acceleration for any desired wave form, including the effects of diffraction,
would show similar trends.

3.4 Preliminary Estimates of Structural Vibration Levels from Sonic Booms
of a High-Speed Civil Transport in Typical Residential Buildings

To illustrate the potential application of these simple concepts, consider the following
example. Assume a sonic boom wave form consisting of a reference sonic boom with a
rise/fall time of 8 ms and a duration, T of 350 ms. (The structural response for other wave
shapes, such as illustrated in Figure 19, can be estimated to a first approximation by accounting
for differences in the envelope of the Sound Exposure Spectrum for alternate wave shapes.)
Further, for convenience, let the peak (ground reflected) overpressure, Py be assumed to be 1
psf. (The response for other peak pressures can be estimated by multiplying the estimated
response for 1 psf by the desired peak pressure since the structural response is expected to be
linearly related to this pressure, all other things being equal.) For this example, estimate the
peak acceleration response of the exterior wall and floor of a residental building, each element
having an average surface weight, w of 5 psf. The resonance frequency of these structural
elements will be assumed to be 17 Hz (see Table 1) and 20 Hz, respectively. The Resonance
Amplification Factor, Q of each will be assumed to be 10. For convenience for this example,
the acceleration response is specified in terms of the Equivalent Peak Acceleration since the
necessary values are illustrated graphically in Figure 20. However, the results could also have
been found using an Acceleration Shock Response Spectrum plot or calculation (see Appendix
A) covering the required range for foT.

From Figure 20, one can find the following values for the Equivalent Peak
Acceleration, A(eq)pk. where it is assumed that the value applies for a unit value of the
empirical correction factor, K specified by Eq. (19). This is equivalent to reading the ordinate
of Figure 20 as A(eq)pk divided by K.

Structural f, T f, T A(eq)pk/K K A(eq)pk
Element Hz sec - g - g
Wall 17 0.35 5.95 0.278 1 0.278
Floor 20 0.35 7.0 0.273 0.25 0.068
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By applying Eq. A17 and A12 in Appendix A, it can be shown that the Acceleration
Exposure Level, Lag, for these two cases is given by:

Wall, Lag =96.3 dB re:(1ug)2es
Floor, LAg =83.4 dBre:(1ug)2es

These estimates of the vibration environment in terms of an Acceleration Exposure Level for a
single sonic boom can now be compared to the criteria defined in Section 1 for the perception
of whole-body or tactile vibration and in Section 2 for the detection of rattle.
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4.0 COMPARISON OF HUMAN RESPONSE CRITERIA TO ESTIMATED
STRUCTURAL VIBRATION ENVIRONMENT

4.1 Comparison to Composite Whole-Body/Tactile Vibration Criteria

A composite criteria for the perception of whole-body or tactile vibration was defined,
for purposes of this report by Eq. (1). When expressed in terms of g's, the peak acceleration
values, Apk(f) above which the average person would be expected to perceive the vibration can
be given as a function of frequency, f by:

0.001 g £ < 4Hz
0.001+(f/4) 4 < f <  40Hz

Apk() = 0.01 40 < f < 200Hz (20)
0.01+(£/200)33 £ > 200Hz

These vibration perception criteria and the preceding example estimates of vibration

environment compare as follows:

----- A(eq)pk, g's - - - - - Estimated Env.
Structural fo Estimated Perception  —————————-
Element Hz Environment Criteria Criteria
Wall 17 0.278 0.0043 65
Floor 20 0.068 0.005 14

Allowing for uncertainty in all parts of this comparison, on the basis of peak acceleration, there
would appear to be no question that the structural vibration would be readily perceived by the
average person in a normal quiescent environment. The ratio of the estimated environment to
the criterion levels varies from 14 to 65 — or a range of 23 to 36 dB on a decibel scale.

Consider the other possible form of a vibration perception criteria: Acceleration
Exposure Level, AEL. Although exact values for a criterion in terms of this descriptor are less
certain, it is suggested in Section 1.5 that the threshold for acceptability for vibration is
expected to fall within a range of Acceleration Exposure Levels of 75 to 95 dB re: (1j1g)2esec.
The preceding environmental estimates of the AEL were 96 and 83 dB, respectively, for the
wall and floor vibration. In this case, the estimated environment lies in the upper part of the



criterion range. For the worst case, the floor and wall Acceleration Exposure Levels would be
8 to 21 dB above the most stringent criterion level (i.e., AEL =75dB). If the average of the
range of criterion levels were used (i.e., AEL = 85dB), then the estimated environment would
be from 2 dB below the criterion level for the floor to 11 dB above the criterion level for the
wall. The point here is that if one attempts to factor in duration effects on human response to a

transient vibration, the potential impact of sonic boom-induced structural vibration (ignoring
rattle) is potentially much less severe.

4.2 Comparison to Rattle Vibration Criteria

In Section 2.3.2, it is suggested that a threshold for the onset of wall vibration-induced
rattle of hanging mirrors, pictures, etc., is a peak acceleration of 0.045 +0.021 g in the
frequency range of low-order wall resonance frequencies — 15 to 150 Hz. The estimated peak
wall vibration environment was 0.278 g — well above this rattle threshold. While the
occurrence of rattle can be, and frequently is, completely mitigated by simple means such as the
use of felt pads located at potential impact points for hanging pictures, etc., it seems clear that if
hanging objects are located near the middle of a typical outside wall and do not employ such
measures, transient rattle triggered by the sonic boom-induced structural vibration would very
likely occur. The significance of this frustratingly minor, and readily abated, source of
annoyance is that it may very well be a major source of community annoyance response to the
impulsive sound of sonic booms, as suggested by the data in Figure 9.

4-2



5.0 SUMMARY

A review of vibration perception criteria and methods for predicting structural vibration
response to sonic booms has indicated the following:

* Estimates of potential structural vibration of typical residential dwellings induced by
a 1 psf, 350 ms reference sonic boom with a rise/fall time of 8 ms indicate levels 23
to 36 dB above composite perception criteria for whole-body and tactile vibration.

*  When compared on the basis of a new descriptor — Acceleration Exposure Level — a
measure which can account for the effect of duration of the vibration environment —
the predicted environment lies in the upper range of acceptable vibration defined in
terms of this descriptor. The predicted environment is estimated to be from -2 to
11 dB above average acceptable acceleration exposure levels. However, further

research on human response to transient vibration is suggested.

» Changes in the estimated vibration environment levels due to the use of shaped
sonic booms with the same peak pressure, such as delayed ramps, and flat-top
wave forms, are expected to reduce the vibration, at most, by less than 3 to 5dB,
and then only at higher structural resonance frequencies above their normal range.

* An appendix presents a basic review of a classical Shock Response Spectrum
method for evaluation of response to sonic booms, and defines methods for
computation of the new Acceleration Exposure descriptor and a related quantity, an
(energy) Equivalent Peak Acceleration. It is shown that these are readily computed
from the absolute value of the Fourier Spectrum of the sonic boom signal and either
analytically or experimentally determined absolute values for the steady-state
frequency response characteristics of the structure to acoustic excitation.

* Another appendix provides a detailed review of the relationship between peak
acceleration and peak sonic boom pressure as observed from one of the largest
sonic boom structural response programs ever conducted (Phase I of the Edwards
AFB sonic boom tests in 1966). A detailed analysis of the data provided the basis
for empirical corrections to simple SDOF structural response models to account for
the more complex vibration response patterns of internal building structure.
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Finally, it is important to point out that many simplifying assumptions have been made
in this report for the sake of providing a simple means of making a preliminary assessment of
structural vibration from HSCT operation over populated areas. However, the degree of
uncertainty in these results is considered comparable to the inherent variation in acceleration
response of a given structure for the same nominal peak sonic boom pressure. This point 1s
made clear upon examination of the regression plots of the Edwards AFB test data in
Appendix B. The degree of scatter in the data is particularly striking considering the fact that
the flight track of the aircraft was nearly always the same although aircraft Mach number and
altitude did vary somewhat from test to test. In any event, detailed considerations of the exact
pressure loading time history (i.e., diffraction, wave front angle effects, etc.) on external
structural surfaces, multi-modal response behavior and the complex interaction between these
external surfaces and internal structure, such as floors, were not included in this report. These
refinements, along with possible consideration of statistical models for structural and human
response and consideration of possible infrasound effects may deserve some consideration if
the observations contained herein still leave unresolved concerns about human response to

structural vibration induced by HSCT operations over inhabited land.
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APPENDIX A
Models for Vibro-Acoustic Response of Buildings to Sonic Boom

A.1 Introduction

Vibro-acoustic response of structures to transient excitation from a sonic boom can be
determined, analytically, by several methods (Sutherland, 1968). Only two methods, one well
known and one new, are identified here.

A.2 Shock Response Spectrum Method

The peak response of a single-degree-of-freedom (SDOF) system to a transient
excitation can be defined by a Shock Response Spectrum which is a function of the dimen-
sionless parameter, f,T, where f, is the undamped natural resonance frequency, f,, and T is
the full duration of the excitation. This Shock Response is the envelope of the general solution
for the response at any time t of the linear dynamic system. Consider, for example, an SDOF
model of the outside wall of a building with a surface mass, m (Kg/m?2), driven by a sonic
boom with a peak pressure, Py, and duration T. The displacement response, X(t), during the
time the excitation is present is the forced response which is given by the Duhamel integral:

t
X(@) = f h(t-1) P(t) dt (AD)
=0
where  h(t) = displacement response to the excitation at time t

= (12rfgm) e exp (-8 2x fot) * sin 2w f4t)

fa = fo\j 1-82, the damped resonance frequency, and
d = 1/2Q, the critical damping ratio, where Q is the resonance amplification
factor
P(t) = the excitation force (i.e., the effective sonic boom load) at time 1 (e.g.,

equal to Po(1 — 21/T) for an ideal N-wave sonic boom with a full-duration

T and peak overpressure Pg).

The resulting integration indicated by Eq. (A1) is straightforward but very tedious for anything
but the simplest (e.g., undamped) cases and is best evaluated by numerical integration. For
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computational purposes, it is convenient to define three non-dimensional response parameters,
displacement, velocity, and acceleration, as follows.

Displacement response, X(t) becomes X*(t) = X(t) 2x fo)2 m/P,
Velocity Response, V() becomes V*(t) =V() 2r fy) m/Py

Acceleration Response, A(f) becomes A*(t) = A(t) w/Pg, with A(t) in units of g,
and where m is the surface mass and w is the surface weight of the structure.

To determine the forced acceleration response, A(t) from Eq. (Al), it is necessary to

first solve for X(t) and then compute the second derivative, numerically, to obtain A(t). When
the above non-dimensional forms are used, and time, t, is also expressed in non-dimensional

form as the ratio, t/T, then the required second derivative is given by:

d2[X(t) (2nfo)? » w/Po)
(2n £, T)2 d [UT]2

A » w/Po = (A2a)
where the d2 terms represent the second-order differences between sequential numerical values
of the non-dimensional displacement and time variables, respectively. The velocity response is
found in the same way using only the first-order differences so that, in non-dimensional form:

d [X(1)]
V*O = Zxt, T) d [7T]

(A2b)

Following the excitation, the residual response of the SDOF system is found from the general
transient solution for free vibration of a SDOF system. The free vibration displacement

response can be expressed in non-dimensional form as:

X*WT) = e [ X*(T) cos [ng(B-1) — 0]+ V*(T) sin([ud(B—l)]] (A3)
V1-52
where L = (2rfoT) and f, is the undamped resonance frequency.
Hg = (2nfyT) and fq is the damped resonance frequency.
B = T, the non-dimensional time which is > 1 for this free response period.

X*(T), V*(T) are the non-dimensional forced displacement and velocity responses of the
system at the end of the excitation (at B =t/T = 1). These become the

necessary and sufficient initial conditions for the free vibration, and

0 = tan! [5N12]
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Again, numerical analysis can be conveniently used to compute the free vibration acceleration
response using Eq (A2a) taking care to insure that an accurate value for the initial velocity,
V*(T), is obtained. This was done by using a simple extrapolation method (a two-term
Taylor's expansion) to extrapolate V*(T) from the last value computed for V*(t) for the forced
vibration period at time T—dt to the value at time T where dt is the time interval between

sequential computed values of the response.

Figure A-1a shows the result of applying this process to compute the time history of the
displacement, velocity, and acceleration responses to an ideal N-wave for an undamped system
with a value for f,T of 0.875 for which the peak response is a maximum. The symbols
represent the numerically computed values and the solid lines are from closed-form solutions
for Eq. (A1) and (A3) for an undamped system, thus demonstrating the validity of the
computational process. Figure A-1b shows the numerically computed responses for the same
system but with damping corresponding to a typical Q of 10. The rapid decay in the peak
responses following the first peak is very apparent. However, as has already been suggested
in the main body of the text, the total energy of this decaying vibration pattern is suggested as a
more realistic and meaningful measure of the total response. That is, while the peak
acceleration response of damped systems can only increase by a factor of less than two for,
say, a ten-fold increase in Q. However, as shown in Section A.3, the total energy of the
decaying vibration will increase approximately in direct proportion to the increase in Q.

The Shock Response Spectrum, computed by the numerical analysis process described
here, provides a simple way to summarize the pattern of peak responses for a range of values
of the system parameter, f,T, and for various values of damping parameter, Q.

Figure A-2 shows the Acceleration Shock Response Spectrum for excitation of a
damped SDOF system with a Q of 10 by an ideal sonic boom N-wave of duration T. The plot
defines the Primary (i.e., t < T) and Residual (t > T) Shock Response Spectra by the envelopes
of the absolute value of their Positive and Negative peak accelerations, expressed in terms of
the non-dimensional acceleration amplitude Apk*w/P,. This response spectrum is a function of
the non-dimensional product, fo*T, and when this parameter is equal to approximately 0.88,
the Acceleration Shock Spectrum has a maximum value of about 2.2 for undamped systems
and a maximum value ranging from 1.65 to 1.95 for damped systems with Q's ranging from
5t 20. At higher values of f,T, the upper bound of the Shock Spectrum for the damped
system decreases slowly as the dimensionless product, f,T, increases. This decrease in the
maximum envelope of the shock response spectrum is proportional to exp(-8+2nf,T) so that it
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Figure A-1. Time History of Response of SDOF System with an Undamped Natural
Frequency fo, to Ideal N-Wave with Duration T for the Case with foT = 0.875
for (a) Undamped SDOF System, and (b) Damped SDOF System with Q = 10.
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decreases, exponentially, as f,T increases. Also shown in Figure A-2, for comparison, is the
maximum value of the Acceleration Shock Response Spectrum for an undamped system driven
by an ideal N-wave. As indicated, this has a maximum value of about 2.2 for foT = 0.875 and
a maximum value of 2 for f,T = n, where n = 2, 3, 4, etc.

This same process has been applied to the evaluation of the response time histories and
Acceleration Shock Response Spectra for several other sonic boom wave forms. Figure A-3
shows the response time histories for a value of foT = 0.875 (part a) and the Acceleration
Shock Response Spectrum (part b) for a reference sonic boom with a rise time of 8 ms and
total duration, T of 350 ms. For convenience, the time histories and Shock Spectrum are
presented in non-dimensional form in terms of a relative time scale, t/T, and the dimensionless
frequency, f,T, respectively. In all cases, the results are calculated for response of a damped
SDOF system with a Q of 10.

Figure A-4 presents the same results for a symmetric delayed-ramp sonic wave form
with a two-part rise/fall phase with an initial/final change in pressure by 1/2 Py in 8 ms and the
remaining change to a full value of Py, in an additional 35 ms for a total rise/fall time of 43 ms.
Figure A-5 presents the same results for an unsymmetrical flat-top wave form with a rise time
of 8 ms to a pressure of Py and remaining at that pressure for an additional 35 ms before

decreasing to -P, at a time of 8 ms before the final decay to zero pressure.

In the main body of the text, the envelope of these response spectra are summarized
along with two examples of the acceleration shock response spectrum, obtained in a similar

manner, for diffracted sonic boom pressure loads on finite-size buildings.
Two points are very clear upon examination of these figures:

1. The time histories and acceleration shock spectra for all of the shaped sonic boom
wave forms (Figures A-3 through A-5) are very similar and differ very little from

the corresponding values for the response to an ideal N-wave.

2. For values of f,T greater than 0.5, corresponding to values for f, greater than
1.4 Hz for T =0.35 sec., the upper bound of the Positive Residual Shock
Spectrum dominates the peak acceleration response. Almost all structures of
concern for sonic boom vibration response will have resonance frequencies well
above this frequency. As the parameter foT increases, the envelope of the maxi-
mum value of the residual Shock Response Spectrum falls off approximately as
exp[-nfo T/Q].
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For undamped systems, there is a simple way to estimate this Residual Shock Response
Spectrum with the use of the Fourier Spectrum (Rubin, 1961). It can be shown that (2nfy)
times the absolute value of the Fourier Spectrum |P(f)| of the acoustic excitation, P(t), divided
by its peak value, Py, is the same as the magnitude of the non-dimensional Residual
Acceleration Shock Spectrum, A (fo)sw/P,, or (Sutherland, 1968):

Ar (fo) * w/Po = (2nif) * IP (/P (Ada)
O

where Pl = | [ P exp(-2nfy) dtl (Adb)
T

is the absolute value of the Fourier Spectrum of P(t) and A(fo)*w/P, is the non-dimensional
peak residual acceleration response equivalent to the form A*(t) used earlier except that it is
valid only for the peak response of an undamped SDOF system with an undamped natural
frequency of f,. However, from a comparison of the Residual Shock Spectrum in Figure A-2
for the damped and undamped system, it is apparent that an ENVELOPE of the latter is a
reasonable but conservative approximation to the peak response of the damped system if one
can accept a degree of conservatism (or uncertainty) in the peak acceleration response of as
much as 100 percent.

While this may seem excessive, this simplified analysis has not considered the effects
of modal response or diffraction. The former modal response effect can cause an increase in
peak modal response of a real structure, beyond that estimated by a simple SDOF model, by a
factor of about 2 (Sutherland, Brown, and Goerner, 1990). The diffraction effect, on the other
hand, is shown in the main body of the text of this report to cause a decrease in peak
acceleration response by as much as about 100 percent. Thus it is not unreasonable to use the
simple expre§sion given by Eq. (A4) as one way to estimate the approximate peak response of
a structure to alternate sonic boom wave forms.

Consider, now, other ways to apply the Fourier Spectrum of a sonic boom wave form
to assess the potential structural response in more detail. The following analysis is carried out
for response to only an ideal sonic boom, partly for the sake of simplicity, but also due to the
fact that, as shown already, the difference in peak structural response at typical (low) resonance
frequencies of interest is not vastly different from that expected for shaped sonic booms.
However, the analysis methods presented are readily applicable 1o any desired wave shape.
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A.3 Fourier Spectrum of Acceleration Response, Acceleration Exposure
Level, and Equivalent Peak Acceleration

The Fourier Spectrum A(f) of the acceleration response time history, A(t), can be
expressed, correctly, as the complex product of the Fourier Spectrum of the effective Pressure
excitation, P(f), and an analytically or experimentally determined, complex Frequency
Response Function, R(f), which specifies the response of the structure to a sinusoidal excita-
tion. Using steady-state acoustic response data for a structure, we can also express the

absolute value of A(f), empirically, by:
IAD! = IP(D)] « Msa(f)/w (AS)
where IP(f)l is the absolute value, of the Fourier Spectrum of the pressure excitation,

Mga(P) is an experimentally determined vibro-acoustic structural response function,
called the Specific Acoustic Mobility, and

w is the surface weight of the structure (in the same units as the acoustic pressure).

Consider, now, these two different ways to utilize the Fourier Spectrum, P(f), of the
excitation. The end objective, in both cases, will be to define two quantities;: (1) the
Acceleration Exposure Level of the response — a measure of its total vibration energy, and
(2) an equivalent peak acceleration of a damped sinusoidal acceleration signal with the same
energy as the actual acceleration response signal. The "energy"” measure is consistent with the
concept suggested in Section 2 of this report that vibration energy or Acceleration Exposure
may be a more powerful descriptor for comparison of a sonic-boom-induced vibration
environment with human response criteria. The second "equivalent peak" acceleration could
also be used for a simpler comparison with existing criteria for both human response and for

the onset of rattle.

Acceleration Exposure for a, SDOF System Response to a Sonic Boom

For purposes of this analysis, let the sonic boom be assumed to be an ideal N-wave
with a peak pressure, Py, a duration, T, and a pressure time history, P(t) = Po(1-2¢/T).
Inserting this into Eq. (Ada), it can be shown that IP(f)l is given by:
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Pl = [ (—Z%?-] « { [2 (1 - coswT) — wTsinwT]2 + [2sinwT-wT(1+coswD]2 } *2(A6)

where @ = 2xf, the angular frequency, in radians per sec.

The absolute value of the Frequency Response Function, R(f), for an SDOF system
driven by a such an excitation can be expressed, in non-dimensional form, as:

ROl = D] < i« {1~ @02 12+ [6Q12 ) (AT)

Note that the Frequency Response Function, R(f), is the same non-dimensional Specific
Acoustic Mobility defined by Eq. (A5). Thus, combining Eq.(A6) and (A7) with (AS), and
taking advantage of the fact that the absolute value of the ratio of two complex quantities is the
same as the ratio of their absolute values, it can be shown that the absolute value of the Fourier

Spectrum, IA(f)l of the acceleration response is given by:

lA(f)l:lP(ﬂ/wl-IA—g()T’)il Cor (A82)
LAD) | = [Poe T /QrfoT)2w) ]« [ (a2+b2)/(c2+d2) ]2 (A8b)

where a and b are the two (real and imaginary) parts of IP(f)l inside the brackets on the right
side of Eq. (A6) and ¢ and d are the corresponding parts in the denominator of IR(H)! in
Eq. (A7).

Consider, now, how this absolute value of the Fourier Spectrum of the acceleration can
be used to define: (1) an Acceleration Exposure (or Exposure Level, when expressed in
decibels), and (2) a quantity that will be called an Equivalent (equal energy) Peak Acceleration,
A(eq)pk- A more complete development of the former relationship has been given elsewhere
for the Sound Exposure Level of a sonic boom signal (Sutherland, 1991).

The total "energy"” of a transient acceleration signal is defined as the Acceleration
Exposure with an abbreviation AE, a letter symbol Ea, and units of g2~sec. It is the integral,
over the duration T of the event, of the square of the acceleration A(t) time history or,

T
Ea = J’Az(t) dt (A9)
0
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However, from Parseval's theorem, this Acceleration Exposure, AE, can also be expressed by
the integral, over frequency of the square of the absolute value of the Fourier Spectrum.
Taking advantage of the even symmetry of this spectrum, this can be given as:

Ea=2 | AR A = | Ea df (A10)
0 O

where  Ea(f) = the Acceleration Exposure Spectral Density, with units (g)2esec/Hz and
equal to 2 « |A(D)I2

and A is given by Eq. (A8).

When expressed in decibels, the Acceleration Exposure Spectral Density is called the Accelera-
tion Exposure Spectrum Level with an abbreviation AESL, letter symbol LAg(f) and units,
decibels. It is defined as:

Lag(f) = 10-Lg [EA()/Eao()], dB (A11)

where Eo(f) is the reference Acceleration Exposure Spectral Density equal to Ag2ety/Af where
Ao =11g, to = 1sec., and Af = 1 Hz or Epq(f) = [1ug]2esec/Hz. Figure A-6 presents two
examples of such Acceleration Exposure Spectrum Levels for the response of an SDOF model
of a structure with an effective surface weight of 5 psf, to an ideal sonic boom N-wave with
peak (ground reflected) pressure of 1 psf. The two cases shown are for a SDOF system with a
Q of 10 and values for f, of 10 Hz and 20 Hz.

The corresponding overall Acceleration Exposure Level, with an abbreviation AEL and
letter symbol LAE, is the value of AE, expressed in decibels re: (1ug)2°s by

Lag =10+ Lg [EA/Eao], dB (A12)

where Epo(f) is a reference AEL equal to [1pg]? « sec.

Equivalent Peak Acceleration

The concept of an Equivalent Peak Acceleration is derived from the peak acceleration of
a damped SDOF system with a natural (undamped) resonance frequency of f,, to an impulse
excitation of vanishingly small duration. The acceleration response, A(t), of such a system can
be defined by:

A1) = Ag» (2D gin(nfyr) (A13)
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Figure A-6.  Acceleration Exposure Spectrum Level for Response of SDOF System with

Q = 10 and Resonance Frequencies of (a) 10 Hz, and (b) 20 Hz, to Ideal

N-Wave with Peak Pressure of 1 psf.
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where )

1/2Q, the critical damping constant

-
I

d the damped resonance frequency = fy+ "\ 1-82

and Ag

the acceleration amplitude of this damped sinusoidal response as
illustrated in the sketch below.

:A —t

Decaying Sinusoidal Acceleration and Equivalent Peak Acceleration, Apk

The actual initial peak acceleration, Apk of this damped sinusoid is less than the acceleration
amplitude, Ao due to the effect of damping between time 0 and the time of the first peak.
Differentiating Eq. (A13), it can be shown that the time, tmax when this first peak occurs is

given by:
tmax = [ 1/(2nfg) Jtan-! [\ 1-82/ 8] (A14)

and the corresponding value of the actual first peak acceleration, Apy is given, to a close

approximation, by:
Apk = Age4Q (A15)

Applying Eq. (A9), it can be shown that the Acceleration Exposure, AE, of this damped
acceleration signal (not unlike many of the actual responses to sonic booms), is given by:

Ea = [Ao?/(4nfy)] « [ Q-1/4Q} (Al6)



Note that for a given acceleration amplitude, Ao, the Acceleration Exposure is inversely
proportional to the undamped resonance frequency, fo and directly proportional to the
Resonance Amplification Factor, Q.

Thus, given the Acceleration Exposure, AE, for any other transient structural response,
such as from a sonic boom, an Equivalent Peak Acceleration, A(eq)pk, can be defined as the
value of the initial peak acceleration, Apk response of an SDOF system to an impulse for which
the Acceleration Exposure, AE, is the same as for the actual acceleration signal. Thus, from
Eq. (A15) and (A16), to a close approximation, this Equivalent Peak Acceleration, A(eq)pk can
be shown to be equal to:

A(eqpk = [4nfoEa+e™R)12 . [Q-1/4Q] 7 (A17)

Clearly, this expression could be applied to define the Equivalent Peak Acceleration for any
transient acceleration response, A(t), in terms of the Acceleration Exposure, E4, which can be
determined by the integral, over frequency, of the absolute value of its Fourier Spectrum, IA(f)
as defined by Eq. (A10).

Egquivalent Peak Acceleration for Response of SDOF System to Sonic Boom

As a simple example of this concept, consider the case defined by Eq. (A8D) for the
response to an ideal N-wave. By numerical integration of IA(D)I2 according to Eq. (A10), and
applying Eq. (A12), values for the Acceleration Exposure Level, AEL, were obtained for an
SDOF system with a Q of 10 and effective surface weight of 5 psf for varying values for the
undamped natural resonance frequency, f,, when driven by an N-wave with a duration, T.
The result is shown in Figure A-7 for an N-wave sonic boom with a peak pressure, P, of
1 psf. The abscissa is the same non-dimensional product of frequency times duration of the
sonic boom as used before.

From the corresponding values of the Acceleration Exposure, Ea, by applying
Eq. (A17), the resulting values for the Equivalent Peak Acceleration, A(eq)pk, could also be
obtained for this case, again as a function of the product, f;T. This result is compared in
Figure A-8 with the envelope of the peak acceleration response that is predicted from the
envelope of the Primary and Residual Shock Response Spectrum for the same case. (For
convenience, the acceleration amplitude has been converted back to the non-dimensional form
equal to Apkew/Po. With one exception, the two models predict approximately the same trend
in peak response as a function of foT. The exception, significant in practical cases only for very
low resonance frequencies, is the curve for the Equivalent Peak Acceleration, A(eq)pks shows
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a new maximum value for f,T equal to about 0.3. This can be explained by a closer
examination of the relationship between A(eq)pk and the parameters, f,T and Q.

Examination of Eq. (A8b), (A10), and (A17) shows that A(eq)pk will be inversely
proportional to the product (foT*Q). It was shown in Figure A-2 that the Primary Negative
Shock Spectrum has an interim maximum value of about 1.2 for ;T equal to about 0.3. Thus,
while the actual peak acceleration is higher for foT of about 0.88, the Equivalent Peak
Acceleration is actually greater at the lower value of f,T since the lower frequency damped
acceleration response will actually have a greater Acceleration Exposure than the response at
foT of 0.88 and hence will have a greater A(eq)pk-

The concepts developed in this appendix are applied in the main body of the report for a
more detailed evaluation of structural response to a sonic boom. This includes the application
of experimental data on vibro-acoustic response of structure to steady-state sound to define,
empirically, absolute values for the dimensionless frequency response function, IA(f)*w / P(D)I
and hence be able to predict the peak transient response to sonic booms with the use of
Eq. (A8a).
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APPENDIX B

Evaluation of Edwards AFB Sonic Boom

Structural Response Test Data

During the Phase I sonic boom tests at Edwards AFB (Stanford, 1967, and Blum,e
1967), 22 accelerometers were mounted in in various locations in two houses (E-1, one-story,
and E-2, two-story). For the 94 B-58 missions and 35 F-104 missions, peak amplitudes of
acceleration for nearly every mission were tabulated along with other mission parameters and
data from various types of vibration and acoustic pressure transducers. Some time histories of
acceleration were also reported. This appendix is a summary of the B-58 and F-104 accelera-
tion time history and acceleration data from these tests in support of this report. XB-70 data
(but not time histories) was omitted from analysis since acceleration data from only three

XB-70 missions were available.

Figures B-1 through B-3 are time histories of acceleration. They show the effect of
different aircraft signatures on the acceleration response of various elements of the houses.
Figure B-1 shows the responses of the dining room east wall of House E-2. Figure B-2
shows the racking response of the northeast comer of House E-1. Figure B-3 shows the

response of the bedroom east wall of House E-1.

Figures B-4 and B-5 show the responses of the various elements of Houses E-1 and
E-2, respectively, due to two B-58 sonic booms.

Figure B-6 shows the small change in acceleration response of the east bedroom wall of
House E-1 for various B-58 missions.

Table B-1 is a summary of the linear regression analyses on the B-58 and F-104 peak
acceleration versus peak pressure data. The data in the table are grouped by structural element.
Also in the table are the resonance frequencies of some of the elements as derived from the time
histories of Figures B-1 through B-6. From the architectural drawings of the Houses (Blume,
1967, and Stanford, 1967), estimates of surface weight were computed and presented in
Table B-1.

Linear regression analyses with the y-intercept points forced to zero were applied to all
the channels of data. These analyses yielded computed slopes for all the data channels. In
order to determine if a statistical significance or similarity exists between the computed slopes,
the "t" test (Freund, 1971) was applied.
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It was determined, with a 95 percent level of confidence, that only three of the 22
channels of B-58 and F-104 data were statistically similar. Figures B-7 through B-9 are plots
of acceleration amplitude versus outdoor average overpressure for those three channels of data
with an accompanying linear regression line. Note that Figures B-7 and B-8 were both racking
responses in the east-west direction and were the uppermost roof line of both houses. The
House E-2 dining room wall response to sonic booms of both aircraft was also statistically
similar as seen in Figure B-9.

Figure B-10 through B-15 are also plots of acceleration amplitude versus outdoor
average peak overpressure but represent the other structural elements, such as floors and
ceilings, whose data sets for each aircraft were statistically different. The accompanying linear
regression lines with y-intercept points forced to zero are also shown in the figures.
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Figure B-1. Tracings of Time Histories of Sonic Boom Induced Acceleration of the East
Dining Room Wall of House E-2 and Outside Pressure Signatures from Three
Aircraft (Figures G-12, G-10, G-8, G-16, G-15 and G-14, Stanford, 1967).
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Figure B-2. Tracings of Times Histories of Sonic Boom Induced East-West Racking
Acceleration at the Roof Line of the Northeast Corner of House E-1 from

Three Aircraft (Figures 8-4, 8-3 and 8-2, Blume 1967).
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Figure B-7. B-58 and F-104 Sonic Boom Induced East-West Racking Acceleration Response
of the Roof Line of House E-1 (Stanford, 1967).
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Figure B-8. B-58 and F-104 Sonic Boom Induced East-West Racking Acceleration Response
of the Second-Story Roof Line of House E-2 (Stanford, 1967).
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Figure B-9. B-58 and F-104 Sonic Boom Induced Horizontal Acceleration Response of the
East Dining Room Wall of House E-2 (Stanford, 1967).
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